
Bachelorarbeit

im Studiengang Mechatronik

Entwicklung eines GPS-Trackers unter Einsatz

eines Low-Cost Mikroconrollers

von Changlai Bao

Matr.-Nr.: 6220001

vorgelegt am 29.02.2024

an der Hochschule Hamm-Lippstadt

Erstprüfer: Prof. Dr. Axel Thümmler

Zweitprüfer: Prof. Dr. Jörg Wenz



KURZZUSAMMENFASSUNG I

Kurzzusammenfassung
Im Zuge der rasanten technologischen Entwicklung der letzten Jahrzehnte hat sich der Einsatz von

GPS-Technologie in unserem Alltag fest etabliert. Von der Navigation in unbekannten Gebieten

bis hin zur Überwachung wertvoller Güter bietet die GPS-Technologie eine unverzichtbare

Grundlage für eine Vielzahl moderner Anwendungen. Allerdings sind kommerzielle GPS-Tracker

oft teuer und bieten nicht immer die gewünschten Funktionen.

Diese Arbeit beschäftigt sich mit der Entwicklung eines kostengünstigen GPS-Trackers auf

Basis eines Low-Cost Mikrocontrollers. Die Forschung und Entwicklung, die in dieser Arbeit

vorgestellt wird, basieren auf einer umfassenden Analyse vorhandener Technologien und Methoden

sowie auf experimentellen Ansätzen zur Realisierung eines Prototyps. Dabei wurde besonderes

Augenmerk auf die Auswahl geeigneter Hardwarekomponenten, die Optimierung der Software

zur Datenverarbeitung und die Integration der verschiedenen Komponenten gelegt.

Die Ergebnisse zeigen, dass der entwickelte GPS-Tracker in Bezug auf Genauigkeit, Energiever-

brauch und Kosten mit teureren kommerziellen Produkten vergleichbar kann. Darüber hinaus

bietet der entwickelte GPS-Tracker eine hohe Flexibilität und Anpassungsfähigkeit, die es ermög-

licht, ihn an verschiedene Anwendungsszenarien anzupassen. Die entwickelte PC-Anwendung

ermöglicht es dem Benutzer, die aufgezeichneten Daten zu visualisieren und zu analysieren,

was eine detaillierte Auswertung der zurückgelegten Wege ermöglicht. Damit leistet die Arbeit

einen positiven Beitrag zur Entwicklung von kostengünstigen GPS-Trackern und eröffnet neue

Möglichkeiten für die Anwendung dieser Technologie in verschiedenen Bereichen.



INHALTSVERZEICHNIS II

Inhaltsverzeichnis

Kurzzusammenfassung I

Abbildungsverzeichnis V

Tabellenverzeichnis VII

Listings VIII

Abkrüzungsverzeichnis X

1 Einführung 1

1.1 Hintergrund und Relevanz . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Zielsetzung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Vorgehensweise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Grundlagen und Designentwurf 5

2.1 Mikrocontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Grundlegende Begriffe von Mikrocontrollern . . . . . . . . . . . . . . 5

2.1.2 Auswahl des Mikrocontrollers . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Auswahl des Entwicklungsboards . . . . . . . . . . . . . . . . . . . . 8

2.1.4 Auswahl der Programmiersprache und der Entwicklungsumgebung (IDE) 9

2.2 GPS Modul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Grundlegende Begriffe des Global Positioning Systems . . . . . . . . . 10

2.2.2 Berechnung und Umwandlung der GPS-Koordinaten . . . . . . . . . . 11

2.2.3 Auswahl der seriellen Schnittstellen (UART) . . . . . . . . . . . . . . 13

2.2.4 Auswahl des GPS Moduls . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Display mit I2C Schnittstelle Modul . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Auswahl der seriellen Schnittstellen (I2C / TWI) . . . . . . . . . . . . 16

2.3.2 Auswahl des Displays mit I2C Schnittstelle . . . . . . . . . . . . . . . 18

2.4 SD-Karte Modul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Auswahl der seriellen Schnittstellen (SPI) . . . . . . . . . . . . . . . . 20

2.4.2 Grundlegende Begriffe von SD-Karte . . . . . . . . . . . . . . . . . . 22



Inhaltsverzeichnis III

3 Umsetzung und Softwareentwicklung 25

3.1 Bauteilverbindung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Entwicklung der Mikrocontroller-Firmware . . . . . . . . . . . . . . . . . . . 27

3.2.1 Beschreibung von initializeSystem() . . . . . . . . . . . . . . . . 30

3.2.2 Beschreibung von lesenSDCard() . . . . . . . . . . . . . . . . . . . 33

3.2.3 Beschreibung von abholenGPSDaten() . . . . . . . . . . . . . . . . 38

3.2.4 Beschreibung von verarbeitenGPSLine() . . . . . . . . . . . . . . 40

3.2.5 Beschreibung von EEPROM_speicherAddress() . . . . . . . . . . . 46

3.2.6 Beschreibung von EEPROM_lesenAddress() . . . . . . . . . . . . . . 46

3.2.7 Beschreibung von ISR(INT0_vect) . . . . . . . . . . . . . . . . . . 47

3.2.8 Beschreibung von ISR(INT1_vect) . . . . . . . . . . . . . . . . . . 49

3.3 Entwicklung der PC-Anwendung . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.1 Beschreibung von COMDatenLesen() . . . . . . . . . . . . . . . . . . 53

3.3.2 Beschreibung von aktuellesDatumHolen() . . . . . . . . . . . . . . 54

3.3.3 Beschreibung von aktuellesDatumUndUhrzeitHolen() . . . . . . . 55

3.3.4 Beschreibung von BreitenLängengradKonvertieren() . . . . . . . 57

3.3.5 Erstellung von GPX-Datei . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.6 Beschreibung von abschluss . . . . . . . . . . . . . . . . . . . . . . 61

4 Test und Ergebnisse 65

4.1 Funktionstests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.1 Vorgehensweise von Funktionstest . . . . . . . . . . . . . . . . . . . . 65

4.1.2 Ergebnisse von Funktionstest . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Demonstrationsbeispiel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.1 Testverfahren und Validierung der Funktionalitäten . . . . . . . . . . . 68

4.2.2 Testverfahren und Validierung der Zuverlässigkeit . . . . . . . . . . . . 71

4.2.3 Testverfahren und Validierung in höhe Geschwindigkeit . . . . . . . . 73

4.3 Ergebnisse der Test- und Validierungsphase . . . . . . . . . . . . . . . . . . . 75

5 Zusammenfassung und Ausblick 76

5.1 Zusammenfassung der Arbeitsergebnisse . . . . . . . . . . . . . . . . . . . . . 76

5.2 Ausblick auf zukünftige Entwicklungen und Anwendungen . . . . . . . . . . . 77

Literaturverzeichnis 78



INHALTSVERZEICHNIS IV

Anhang: Code-Listings der Mikrocontroller-Firmware 80

Anhang: Code-Listings der PC-Anwendung 92

Eidesstattliche Erklärung 100



ABBILDUNGSVERZEICHNIS V

Abbildungsverzeichnis

2.1 Aufbau eines typischen Mikrocontrollers [2] . . . . . . . . . . . . . . . . . . . 5

2.2 Die Anschlussbelegung des ATmega88PA in der Bauform PDIP28 [4] . . . . . 8

2.3 Das myAVR Board MK2 [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Das Prinzip der Trilateration [8] . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Zeitlicher Verlauf der Übertragung eines Bytes bei der Verwendung des UART-

Protokolls [10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Die Pins des CD-PA1616D GNSS Patch-Antennenmoduls [11] . . . . . . . . . 15

2.7 Synchronisierung beim I2C-Protokoll [10] . . . . . . . . . . . . . . . . . . . . 17

2.8 Start- und Stoppbedingungen im I2C-Protokoll [10] . . . . . . . . . . . . . . . 18

2.9 Ein vollständiger I2C-Kommunikationszyklus (Beispiel) [10] . . . . . . . . . . 19

2.10 LCD-Display mit I2C-Schnittstelle 1602A HD44780 [12] . . . . . . . . . . . . 20

2.11 SPI-Verbindungsstruktur zwischen einem Master und einem Slave [10] . . . . . 21

2.12 Signalverlauf der SPI-Datenübertragung [10] . . . . . . . . . . . . . . . . . . 21

3.1 Verbindung der Hardwarekomponenten . . . . . . . . . . . . . . . . . . . . . 26

3.2 Verbindung des GPS-Moduls mit dem Mikrocontroller . . . . . . . . . . . . . 27

3.3 UART-Kommunikation zwischen PC, Mikrocontroller und GPS-Modul . . . . 27

3.4 Verbindung des LCD-Displays mit dem Mikrocontroller . . . . . . . . . . . . 28

3.5 Belegung der Kontakte einer SD-Karte und deren Anschluss an einen Mikrocon-

troller im SPI-Modus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6 Verbindung der Taster mit dem Mikrocontroller . . . . . . . . . . . . . . . . . 29

3.7 Struktur und Funktionsweise der initializeSystem() Funktion . . . . . . . 30

3.8 Display mit der Meldung Messung starten durch Taste 1 . . . . . . . . 32

3.9 Display mit der Meldung Weiter messen durch Taste 1 . . . . . . . . . . 32

3.10 Display mit der Meldung Keine SD-Karte! . . . . . . . . . . . . . . . . . . 33

3.11 Struktur und Funktionsweise der lesenSDCard() Funktion . . . . . . . . . . 34

3.12 Display mit der Meldung Lesen... . . . . . . . . . . . . . . . . . . . . . . . 37

3.13 Display mit der Meldung Lesen erfolgreich! . . . . . . . . . . . . . . . . 38

3.14 Struktur und Funktionsweise der abholenGPSDaten() Funktion . . . . . . . . 39

3.15 Struktur und Funktionsweise der verarbeitenGPSLine() Funktion . . . . . . 41



ABBILDUNGSVERZEICHNIS VI

3.16 Display mit der Meldung Kein GPS-Signal! . . . . . . . . . . . . . . . . . 42

3.17 Display mit den GPS-Daten . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.18 Sektor 0 auf der SD-Karte . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.19 Sektor 1 auf der SD-Karte . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.20 Struktur und Funktionsweise der ISR(INT0_vect) Funktion . . . . . . . . . . 48

3.21 Struktur und Funktionsweise der ISR(INT1_vect) Funktion . . . . . . . . . . 50

3.22 Struktur und Funktionsweise der COMDatenLesen() Funktion . . . . . . . . . 53

3.23 Benutzeroberfläche zur Konfiguration des COM-Ports . . . . . . . . . . . . . . 54

3.24 Struktur und Funktionsweise der aktuellesDatumHolen() Funktion . . . . . 55

3.25 Struktur und Funktionsweise der aktuellesDatumUndUhrzeitHolen() Funk-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.26 Struktur und Funktionsweise der BreitenLängengradKonvertieren() Funk-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.27 Struktur und Funktionsweise des abschluss Abschnitts . . . . . . . . . . . . 62

3.28 Benutzeroberfläche der PC-Anwendung nach Abschluss des Datenverarbeitungs-

prozesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.29 Inhalt der GPX-Datei „Output_20240216_143811.gpx“ . . . . . . . . . . . . . 63

4.1 aufgezeichnete Strecke im 1. Test in gpx.studio . . . . . . . . . . . . . . . . . 68

4.2 aufgezeichnete Strecke im 1. Test in gpx.studio (vergrößert) . . . . . . . . . . . 69

4.3 aufgezeichnete Strecke im 1. Test mit Handy . . . . . . . . . . . . . . . . . . . 70

4.4 aufgezeichnete Strecke im 2. Test in gpx.studio . . . . . . . . . . . . . . . . . 71

4.5 aufgezeichnete Strecke im 2. Test in gpx.studio (vergrößert) . . . . . . . . . . . 72

4.6 aufgezeichnete Strecke im Auto-Test in gpx.studio . . . . . . . . . . . . . . . . 73

4.7 aufgezeichnete Strecke im Auto-Test in gpx.studio (vergrößert) . . . . . . . . . 74



TABELLENVERZEICHNIS VII

Tabellenverzeichnis

1.1 Funktionsanforderung des Tracking-Systems . . . . . . . . . . . . . . . . . . . 3

2.1 In der Praxis häufig verwendete Baudraten [10] . . . . . . . . . . . . . . . . . 15

2.2 Belegung der Kontakte einer SD-Karte und deren Anschluss an einen Mikrocon-

troller im SPI-Modus [13] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 GPS Tracker Testergebnisse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



LISTINGS VIII

Listings

3.1 Quellcode der lcd_clear() Funktion von Bibliothek lcd.c . . . . . . . . . . 33

3.2 Quellcode der lcd_print() Funktion von Bibliothek lcd.c . . . . . . . . . . 34

3.3 Quellcode der setBaudRate() Funktion . . . . . . . . . . . . . . . . . . . . 35

3.4 Quellcode der SD_readSingleBlock() Funktion von Bibliothek sd_card.c . 35

3.5 Quellcode der uart0_available() Funktion von Bibliothek uart.c . . . . . 38

3.6 Beispiel einer 𝐺𝑁𝐺𝐺𝐴- Zeile . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7 Quellcode zur Überprüfung des GPS-Fix-Status . . . . . . . . . . . . . . . . . 42

3.8 Quellcode der lcd_setcursor() Funktion von Bibliothek lcd.c . . . . . . . 43

3.9 Quellcode der speichernSDCard() Funktion von Bibliothek sd_card.c . . . 44

3.10 Quellcode der EEPROM_speicherAddress() Funktion . . . . . . . . . . . . . 46

3.11 Quellcode der EEPROM_lesenAddress() Funktion . . . . . . . . . . . . . . . 47

3.12 Quellcode der ISR(INT0_vect) Funktion . . . . . . . . . . . . . . . . . . . . 48

3.13 Quellcode der ISR(INT1_vect) Funktion . . . . . . . . . . . . . . . . . . . . 49

3.14 Quellcode der COMDatenLesen Funktion . . . . . . . . . . . . . . . . . . . . 53

3.15 Quellcode der aktuellesDatumHolen Funktion . . . . . . . . . . . . . . . . 55

3.16 Quellcode der aktuellesDatumUndUhrzeitHolen Funktion . . . . . . . . . 56

3.17 Quellcode der BreitengradKonvertieren Funktion . . . . . . . . . . . . . 58

3.18 Quellcode der LängengradKonvertieren Funktion . . . . . . . . . . . . . . 58

3.19 Beispiel einer GPX-Datei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.20 Quellcode der GPXOrdnerErstellen Funktion . . . . . . . . . . . . . . . . . 60

3.21 Quellcode der GPXDateiErstellen Funktion . . . . . . . . . . . . . . . . . . 61

3.22 Quellcode der TerminalAusgabe Funktion . . . . . . . . . . . . . . . . . . . 61

3.23 Quellcode des Abschnitts abschluss . . . . . . . . . . . . . . . . . . . . . . 62

5.1 vollständiger Quellcode des Mikrocontroller-Programms . . . . . . . . . . . . 80

5.2 vollständiger Quellcode der PC-Anwendung . . . . . . . . . . . . . . . . . . . 92



ABKRÜZUNGSVERZEICHNIS IX

Abkrüzungsverzeichnis
API Application Programming Interface

CAN Controller Area Network

CPU Central Processing Unit

DMA Direct Memory Access

EEPROM Electrically Erasable Programmable Read-Only Memory

GND Ground

GNSS Global Navigation Satellite System

GPIO General Purpose Input/Output

GPS Global Positioning System

GPX GPS Exchange Format

GUI Graphical User Interface

HSHL Hochschule Hamm-Lippstadt

I/O Input/Output

I2C Inter-Integrated Circuit

IDE Integrated Development Environment

INT Interrupt

ISR Interrupt Service Routine

KML Keyhole Markup Language

LCD Liquid Crystal Display

MISO Master In Slave Out

MOSI Master Out Slave In



ABKRÜZUNGSVERZEICHNIS X

PC Personal Computer

PCB Printed Circuit Board

RAM Random Access Memory

ROM Read-Only Memory

RST Reset

RTC Real-Time Clock

RX Receive

SCL/SCK Serial Clock

SD Secure Digital

SDA Serial Data

SDHC Secure Digital High Capacity

SDXC Secure Digital eXtended Capacity

SPI Serial Peripheral Interface

SRAM Static Random Access Memory

SS Slave Select

TWI Two-Wire Interface

TX Transmit

UART Universal Asynchronous Receiver Transmitter

USB Universal Serial Bus

VCC Voltage Common Collector

WLAN Wireless Local Area Network



1 EINFÜHRUNG 1

1 Einführung

1.1 Hintergrund und Relevanz

In der heutigen Zeit spielt das GPS-Tracking eine immer größere Rolle. Die Anwendungsbereiche

von GPS-Tracking sind vielfältig. In der Logistikbranche wird GPS-Tracking eingesetzt, um

die genaue Position von Waren und Fahrzeugen zu verfolgen. Dies ermöglicht eine effiziente

Routenplanung und eine präzise Lieferverfolgung. Im Flottenmanagement wird GPS-Tracking

verwendet, um die Position und den Betriebsstatus von Fahrzeugen zu überwachen. Dies

ermöglicht eine effiziente Flottenverwaltung und eine präzise Fahrzeugortung. Darüber hinaus

wird GPS-Tracking auch im Bereich der Navigation eingesetzt, um die genaue Position und den

Weg zu einem Zielort zu bestimmen.

In Szenarien, die einen intensiven Einsatz von Trackern erfordern, oder in schwer zugänglichen

Bereichen wie Wäldern oder Bergen, ist es jedoch oft schwierig, die Kosten für meisten

kommerziellen GPS-Tracker zu tragen. Die Entwicklung eines kostengünstigen GPS-Trackers,

der dennoch zuverlässige und genaue Daten liefert, könnte daher eine attraktive Alternative

darstellen. Ein solches System könnte nicht nur die Kosten für die Anschaffung und Wartung von

Trackern senken, sondern auch die Effizienz und Genauigkeit der Positionsverfolgung verbessern.

Ein Beispiel dazu ist [1]. Dieses Beispiel erklärt eine Richtung, dass die GPS-Tracking-Technologie

im Tierschutz eingesetzt wird. In diesem Fall spielt der GPS-Tracker eine wichtige Rolle, wenn

sich der Gesundheitszustand der Wildtiere verschlechtert. Die GPS-Tracker verwendet einen

kostengünstigen Mikrocontroller (ATmega88PA), werden an den Tieren befestigt und zeichnen

die GPS-Koordinaten in festgelegten Zeitintervallen auf. Dazu kann auch die Position des Tieres

an die zuständige Behörde senden, um eine schnelle Rettung zu ermöglichen.



1 EINFÜHRUNG 2

1.2 Zielsetzung

Das Hauptziel dieser Arbeit ist die Entwicklung eines effizienten und benutzerfreundlichen

GPS-Tracking-Systems auf Basis eines kostengünstigen Mikrocontrollers. Dieses System soll

nicht nur in der Lage sein, GPS-Koordinaten und Zeitstempel in vordefinierten Intervallen

präzise aufzuzeichnen, sondern auch die gesammelten Daten sicher und zugänglich auf einer

SD-Karte zu speichern. Eine wesentliche Funktion ist die Echtzeitanzeige der GPS-Koordinaten

auf einem LCD-Display, was eine unmittelbare Orientierung und Positionsverfolgung ermöglicht.

Zusätzlich ist die Steuerung der Messung und das Auslesen der Daten über Taster vorgesehen, um

eine einfache Handhabung zu gewährleisten. Ein weiteres zentrales Ziel ist die Entwicklung einer

PC-Anwendung, die nicht nur die Visualisierung der empfangenen Daten ermöglicht, sondern

auch deren Speicherung in einem nutzerfreundlichen Format. Die Lösung soll dabei nicht nur

kosteneffizient und einfach in der Bedienung sein, sondern auch eine hohe Zuverlässigkeit und

Genauigkeit bieten.

Um diese Ziele zu erreichen, wurde während der Entwicklungsphase des GPS-Trackers unter

Einsatz eines kostengünstigen Mikrocontrollers eng mit Prof. Dr. Axel Thümmler zusammen-

gearbeitet, um die grundlegenden Anforderungen zu definieren. Diese Anforderungen wurden

in weiteren Gesprächen und Beratungen mit dem wissenschaftlichen Mitarbeiter Ilya Raza

spezifiziert und verfeinert. Die Ergebnisse dieser Diskussionen führten zu den in Tabelle 1.1

zusammengefassten Grundanforderungen für die Produktentwicklung.

mailto:axel.thuemmler@hshl.de
mailto:ilya.raza@hshl.de


1 EINFÜHRUNG 3

Tabelle 1.1: Funktionsanforderung des Tracking-Systems

Nr Funktion Beschreibung der Anforderung

1 Taster-Bedienung

Ermöglicht es dem Benutzer, die Messung zu starten,

zu pausieren und neu zu initialisieren, was eine flexi-

ble Handhabung der Datenerfassung ermöglicht. Das

System unterstützt auch das Starten des Lesens der

Daten.

2 Anzeigefunktion

Zeigt die aktuelle Position und den Zeitstempel in Echt-

zeit an. Informiert den Benutzer über den aktuellen

Betriebsstatus und ermöglicht eine unmittelbare Rück-

meldung während des Betriebs.

3 Speicherfunktion

Speichert die aufgezeichneten GPS-Daten und Zeitstem-

pel sicher auf einer SD-Karte, was eine langfristige

Datensicherung und einfache Übertragbarkeit ermög-

licht.

4 Lesefunktion

Ermöglicht das Auslesen der auf der SD-Karte gespei-

cherten Daten, was eine spätere Analyse und Visualisie-

rung der aufgezeichneten Routen unterstützt.

5 Erstellung lesbarer Dateien

Konvertiert die ausgelesenen Daten in ein benutzer-

freundliches Format, das es ermöglicht, den Messungs-

pfad visuell auf einer Karte darzustellen und somit eine

detaillierte Analyse der zurückgelegten Wege bietet.

6
Benutzerfreundliche

PC-Anwendung

Entwickelt eine intuitive PC-Anwendung für die Visua-

lisierung, Bearbeitung und Speicherung der GPS-Daten,

die eine einfache Interaktion mit den gesammelten In-

formationen ermöglicht.

Die oben entwickelten Anforderungen bildeten den Rahmen für die Gestaltung des Tracking-

Systems und stellten sicher, dass es die Anforderungen der verschiedenen Stakeholder erfüllte.

Die Einbeziehung von Expertenmeinungen hat wesentlich zur Qualität und Effektivität des

entwickelten Systems beigetragen.



1 EINFÜHRUNG 4

1.3 Vorgehensweise

Die Entwicklung eines GPS-Tracking-Systems folgt einem strukturierten Vorgehen, das sicher-

stellt, dass die Anforderungen der Stakeholder erfüllt und technische Herausforderungen effizient

bewältigt werden. Dieser Prozess beinhaltet mehrere Kernschritte:

Anforderungsanalyse: Zu Beginn des Projekts steht die Ermittlung und Analyse der Anforderun-

gen an das GPS-Tracking-System. Hier werden die Bedürfnisse und Erwartungen der Stakeholder

genau definiert.

Literaturrecherche und Designentwurf: Nach der Anforderungsanalyse folgt die Recherche

technischer Grundlagen, die für die Entwicklung des Systems notwendig sind. In diesem

Schritt werden passende Hardwarekomponenten ausgewählt und ein vorläufiges Softwaredesign

entwickelt.

Umsetzung und Softwareentwicklung: Im nächsten Schritt erfolgt die eigentliche Entwicklung

des Systems. Die ausgewählten Hardwarekomponenten werden beschafft, miteinander verbunden

und mit der entwickelten Software ausgestattet. Zusätzlich wird eine Anwendung für den PC

entwickelt, die die Datenverwaltung und -analyse ermöglicht.

Test und Validierung: Nach der Entwicklung des Systems werden umfangreiche Tests durch-

geführt, um die Funktionalität und Zuverlässigkeit des GPS-Tracking-Systems zu überprüfen.

Diese Phase beinhaltet sowohl Simulationstests als auch die Bewertung der Datenpräzision und

Systemzuverlässigkeit.

Ergebnisse und Diskussion: Abschließend werden die Ergebnisse der Test- und Validierungs-

phase präsentiert und diskutiert. Dabei wird untersucht, inwieweit das entwickelte System die

anfangs definierten Anforderungen erfüllt und den Erwartungen der Stakeholder entspricht.

Zusätzlich werden mögliche Verbesserungen und Erweiterungen für das System identifiziert und

vorgeschlagen.



2 GRUNDLAGEN UND DESIGNENTWURF 5

2 Grundlagen und Designentwurf
In diesem Abschnitt werden die technischen Grundlagen für die Entwicklung des GPS-Tracking-

Systems recherchiert. Dazu gehören die Auswahl der Hardwarekomponenten und die Integration

der Komponenten. Die Ergebnisse der Recherche und Analyse bilden die Grundlage für den

Designentwurf des GPS-Tracking-Systems.

2.1 Mikrocontroller

2.1.1 Grundlegende Begriffe von Mikrocontrollern

Mikrocontroller sind integrierte Schaltungen, die einen Mikroprozessor, Speicher und Ein-

/Ausgabeperipherie auf einem einzigen Chip vereinen [2]. Ein wesentliches Anwendungsfeld

von Mikroprozessoren und insbesondere Mikrocontrollern sind die sogenannten eingebetteten

Systeme (Embedded Systems) [2].

Abbildung 2.1: Aufbau eines typischen Mikrocontrollers [2]

Abbildung 2.1 zeigt den Aufbau eines typischen Mikrocontrollers. Mikrocontroller bestehen aus

verschiedenen Komponenten, die auf die Lösung von Steuerungs- und Kommunikationsaufgaben

zugeschnitten sind. Die wichtigsten Komponenten sind der Prozessorkern, der Speicher, die

Ein-/Ausgabeeinheiten, die zeitgeberbasierten Einheiten, die Unterbrechungssteuerung und die

DMA (Direct Memory Access) [2].

Der Prozessorkern, der die Befehle des Programms ausführt und die anderen Komponenten



2 GRUNDLAGEN UND DESIGNENTWURF 6

steuert. Der Prozessorkern kann verschiedene Architekturen aufweisen, wie z.B. CISC, RISC,

VLIW oder EPIC. Die Architektur bestimmt die Struktur und den Umfang des Befehlssatzes,

die Anzahl und Art der Register, die Adressraumorganisation, die Pipelinetechniken und die

Unterstützung von Parallelität und Spekulation [2].

Der Speicher kann aus verschiedenen Typen bestehen, wie z.B. Festwertspeicher (ROM),

Schreib-/Lesespeicher (RAM) oder Flash-Speicher. Der Speicher kann intern oder extern zum

Mikrocontroller angebunden sein. Die Speichergröße, die Zugriffszeit, die Lebensdauer und die

Programmierbarkeit sind wichtige Faktoren für die Speicherauswahl [2].

Die Ein-/Ausgabeeinheiten, die die Schnittstellen zu den externen Geräten und Sensoren bilden.

Die Ein-/Ausgabeeinheiten können digital oder analog sein, parallel oder seriell, synchron oder

asynchron. Sie können verschiedene Standards und Protokolle unterstützen, wie z.B. UART,

SPI, I2C, CAN, USB, Ethernet oder WLAN. Die Ein-/Ausgabeeinheiten können direkt an den

Prozessorkern oder über einen Erweiterungsbus angeschlossen sein [2].

Die zeitgeberbasierten Einheiten, die die zeitliche Steuerung und Überwachung der Mikrocon-

trollerfunktionen ermöglichen. Die zeitgeberbasierten Einheiten können aus Zählern, Zeitgebern,

Capture-und-Compare-Einheiten, Pulsweitenmodulatoren, Watchdog-Einheiten oder Echtzeit-

Ein-/Ausgabeeinheiten bestehen [2].

Die Unterbrechungssteuerung, die die Reaktion des Mikrocontrollers auf interne oder externe Er-

eignisse ermöglicht. Die Unterbrechungssteuerung kann aus einem Unterbrechungsvektor, einem

Unterbrechungsprioritätsregister, einem Unterbrechungsstatusregister und einem Unterbrechungs-

maskenregister bestehen. Sie kann verschiedene Unterbrechungsquellen und -arten verwalten,

wie z.B. Hardware- oder Softwareunterbrechungen, maskierbare oder nicht-maskierbare Unter-

brechungen, vorrangige oder gleichrangige Unterbrechungen. Sie kann verschiedene Unterbre-

chungsbehandlungsverfahren durchführen, wie z.B. Polling, Daisy-Chaining oder Vektorisierung

[2].

Die DMA (Direct Memory Access), die die direkte Übertragung von Daten zwischen Speicher

und Ein-/Ausgabeeinheiten ohne Beteiligung des Prozessorkerns ermöglicht. Die DMA kann aus

einem DMA-Controller, einem DMA-Kanalregister, einem DMA-Adressregister und einem DMA-

Zählerregister bestehen. Sie kann verschiedene DMA-Modi und -Verfahren unterstützen, wie z.B.

Burst- oder Cycle-Stealing-Modus, Single- oder Multi-Transfer-Verfahren, Memory-to-Memory-

oder Memory-to-Peripheral-Verfahren [2].



2 GRUNDLAGEN UND DESIGNENTWURF 7

2.1.2 Auswahl des Mikrocontrollers

Für die Entwicklung eines GPS-Trackers wurde ein Vergleich verschiedener auf dem Markt

erhältlicher Mikrocontroller durchgeführt, wobei besonderes Augenmerk auf bestimmte Kriterien

gelegt wurde. Die Verfügbarkeit des Mikrocontrollers ist entscheidend, da er leicht zu beschaffen

sein sollte und eine lange Lebensdauer aufweisen muss. Gleichzeitig spielt der Preis eine wichtige

Rolle, um die Gesamtkosten des Trackers zu minimieren. Eine ausführliche und verständliche

Dokumentation erleichtert die Programmierung und den Einsatz des Mikrocontrollers erheblich.

Die Unterstützung durch den Hersteller sowie eine aktive Community sind ebenfalls von

Bedeutung, da sie bei Fragen und Problemen hilfreich sein können.

Die Bauformen, in denen der Mikrocontroller verfügbar ist, müssen vielfältig sein, um eine flexible

Anpassung an das Design des Tracker-Gehäuses zu ermöglichen. Der Betrieb des Mikrocontrollers

bei niedriger Spannung ist wichtig, um Kompatibilität mit anderen Tracker-Komponenten zu

gewährleisten. Ein geringer Stromverbrauch ist entscheidend für die Langlebigkeit des Trackers im

Batteriebetrieb. Die Taktgeschwindigkeit des Mikrocontrollers muss hoch genug sein, um GPS-

Daten effizient verarbeiten und übertragen zu können. Schließlich ist ausreichender Speicherplatz,

sowohl im Flash-Speicher als auch im RAM, notwendig, um das Programm und die Daten

speichern zu können.

Nach einem Vergleich verschiedener Mikrocontroller-Familien, wie z.B. AVR, PIC, MSP430,

Zilog, NXP und STM32, wurde die AVR-Familie von Microchip (früher Atmel) als geeignete

Wahl identifiziert [3]. Die AVR-Mikrocontroller zeichnen sich durch eine klare, moderne und

übersichtliche Struktur aus, die die Vermittlung von Grundlagenwissen erleichtert. Sie haben

einen gemeinsamen Befehls- und Registersatz, der die Portabilität der Programme ermöglicht.

Sie sind weit verbreitet und haben eine große Nutzer- und Entwicklergemeinschaft. Sie sind in

verschiedenen Bauformen und Preisklassen erhältlich und bieten eine hohe Leistung bei geringem

Stromverbrauch.

Innerhalb der AVR-Familie wurde der ATmega88PA als konkreter Mikrocontroller für den GPS-

Tracker ausgewählt. Der ATmega88PA ist ein 8-Bit-Mikrocontroller mit einem RISC-Prozessor,

der mit bis zu 20 MHz getaktet werden kann [4]. Er hat 8 KB Flash-Speicher, 512 Byte EEPROM

und 1 KB SRAM [4]. Er hat 23 programmierbare I/O-Pins, die in 6 Ports organisiert sind [4]. Der

ATmega88PA ist in verschiedenen Bauformen erhältlich, wie z.B. PDIP28, TQFP32, QFN32,

MLF32, VQFN32, SOIC28, SOIC32, TSSOP28, TSSOP32, DFN28, DFN32, WLCSP32 [4].



2 GRUNDLAGEN UND DESIGNENTWURF 8

Dazu wird Bauform PDIP28 für die Entwicklung und den Einsatz des GPS-Trackers verwendet

und kostet etwa 1,5 bis 3 Euro pro Stück (Stand: 2024 Microchip). Er hat eine serielle UART-

Schnittstelle, eine serielle SPI-Schnittstelle, eine serielle TWI-Schnittstelle (I2C) [4]. Er kann

mit einer Spannung von 1,8 V bis 5,5 V betrieben werden und hat einen Stromverbrauch von

0,2 mA im Aktivmodus [4]. Er hat eine ausführliche und verständliche Dokumentation und

wird vom Microchip Studio (früher Atmel Studio 7) unterstützt. Der ATmega88PA erfüllt die

Anforderungen an den Mikrocontroller für den GPS-Tracker und bietet eine gute Grundlage für

die Entwicklung und den Einsatz des Trackers. Abbildung 2.2 zeigt die Anschlussbelegung des

ATmega88PA in einem 28-poligen PDIP-Gehäuse.

Abbildung 2.2: Die Anschlussbelegung des ATmega88PA in der Bauform PDIP28 [4]

2.1.3 Auswahl des Entwicklungsboards

Um den ATmega88PA zu programmieren und zu testen, wurde das myAVR Board MK2 verwendet.

Abbildung 2.3 zeigt das myAVR Board MK2. Das myAVR Board MK2 hat einen ATmega88PA-

Mikrocontroller in einem PDIP28-Gehäuse, der mit einem 3686400-MHz-Quarzoszillator getaktet

wird. Über Microchip JTAGICE3 Debugger kann der ATmega88PA auf dem myAVR Board MK2

programmiert und debuggt werden. Außerdem bietet das Board verschiedene Schnittstellen und

Anschlüsse, wie z.B. USB, UART, SPI, I2C, was geeignet für die Entwicklung und den Einsatz des

GPS-Trackers ist. Darüber hinaus bietet das Board zwei Taster, was für die Benutzerinteraktion

des GPS-Trackers nützlich ist [5].



2 GRUNDLAGEN UND DESIGNENTWURF 9

Abbildung 2.3: Das myAVR Board MK2 [5]

2.1.4 Auswahl der Programmiersprache und der Entwicklungsumgebung (IDE)

Die Programmierung von Mikrocontrollern erfordert die Verwendung von geeigneten Pro-

grammiersprachen und Entwicklungsumgebungen, die an die spezifischen Anforderungen und

Eigenschaften dieser Geräte angepasst sind. Die Wahl der Programmiersprache hängt von

verschiedenen Faktoren ab, wie z.B. dem Ziel des Projekts, den verfügbaren Ressourcen, den

persönlichen Vorlieben und der Erfahrung des Entwicklers. Daher ist es wichtig, die Anforderun-

gen und Erwartungen des jeweiligen Projekts zu berücksichtigen und die Sprache entsprechend

auszuwählen. Neben der Programmiersprache ist auch die Entwicklungsumgebung ein wichtiger

Aspekt der Mikrocontroller-Programmierung. Die Entwicklungsumgebung ist die Software, die

dem Entwickler Werkzeuge zur Verfügung stellt, um den Code zu schreiben, zu kompilieren, zu

übertragen, zu debuggen und zu testen. Es gibt verschiedene Entwicklungsumgebungen für Mikro-

controller, die je nach der verwendeten Programmiersprache, dem verwendeten Mikrocontroller

und den gewünschten Funktionen variieren.

In diese Arbeit wird C Sprache verwendet, weil C Sprache direkte Kontrolle über die Hardware und

eine hohe Leistung ermöglicht. C Sprache ist auch eine portable Sprache, die auf verschiedenen

Plattformen und Architekturen verwendet werden kann. Außerdem wird Microchip Studio (früher



2 GRUNDLAGEN UND DESIGNENTWURF 10

Atmel Studio 7) verwendet, weil Microchip Studio eine integrierte Entwicklungsumgebung

(IDE) ist, die für die Programmierung von Atmel-Mikrocontrollern, wie z.B. AVR und ARM,

entwickelt wurde [3]. Microchip Studio unterstützt die Programmierung in C/C++ mit einem

vollständigen Zugriff auf die Hardware-Register und die Optimierung des Codes. Microchip

Studio bietet auch eine leistungsstarke und anpassbare GUI, die einen erweiterten Code-Editor,

einen integrierten Debugger, einen Simulator, einen Logikanalysator, einen Leistungsanalysator

und einen Geräteprogrammierer umfasst.

2.2 GPS Modul

2.2.1 Grundlegende Begriffe des Global Positioning Systems

Das Global Positioning System (GPS) ist ein satellitengestütztes Navigationssystem, das es

Nutzern ermöglicht, ihre Position und Zeit auf der Erde zu bestimmen. GPS nutzt ein Netzwerk

von mindestens 24 Satelliten, die in sechs Umlaufbahnen um die Erde kreisen und kontinuierlich

Navigationsnachrichten aussenden [6]. Die Satelliten senden ihre Navigationsnachrichten mit

einer Frequenz von 1575,42 MHz (L1-Band) und 1227,60 MHz (L2-Band) aus, die von GPS-

Empfängern empfangen und verarbeitet werden [7]. Diese Nachrichten enthalten Informationen

über die Position und die Zeit des Satelliten sowie Korrekturdaten für die Signalverzögerung und

die Umlaufbahnabweichung.

Um die Position zu berechnen, empfängt ein GPS-Empfänger die Navigationsnachrichten von

mindestens vier Satelliten und misst die Zeitdifferenz zwischen dem Aussenden und dem

Empfangen der Signale. Diese Zeitdifferenz entspricht der Entfernung zwischen dem Empfänger

und dem Satelliten, die als Pseudostrecke bezeichnet wird. Durch die Verwendung von mindestens

vier Pseudostrecken kann der Empfänger seine dreidimensionale Position (Längen-, Breiten-

und Höhengrad) und die Zeit mit Hilfe eines mathematischen Verfahrens namens Trilateration

bestimmen [7]. Die Trilateration ist ein geometrisches Verfahren, das die Position eines Punktes

in einem Raum durch die Messung seiner Entfernung zu bekannten Punkten bestimmt. Die

Trilateration basiert auf der Lösung eines Gleichungssystems, das die Entfernungen zu den

Satelliten und die Position des Empfängers enthält. Die Lösung des Gleichungssystems ergibt die

genaue Position des Empfängers. Das Gleichungssystem wird im Unterabschnitt 2.2.2 detailliert

beschrieben.



2 GRUNDLAGEN UND DESIGNENTWURF 11

GPS ist nicht das einzige System, das Satellitensignale zur Positionsbestimmung nutzt. Es gibt

auch andere globale Navigationssatellitensysteme (GNSS), wie z.B. das russische GLONASS,

das europäische Galileo und das chinesische Beidou [7]. Diese Systeme sind mit GPS kompatibel

und bieten ähnliche oder bessere Genauigkeit und Verfügbarkeit. Darüber hinaus gibt es auch

regionale und lokale Systeme, die GPS ergänzen oder erweitern, wie z.B. das europäische EGNOS,

das japanische QZSS und das indische IRNSS. Diese Systeme bieten zusätzliche Signale oder

Korrekturdaten, um die Genauigkeit, Zuverlässigkeit und Integrität von GPS zu verbessern.

2.2.2 Berechnung und Umwandlung der GPS-Koordinaten

Die Berechnung der Position eines GPS-Empfängers basiert auf der Bestimmung der genauen

Entfernung zu mehreren GPS-Satelliten und der anschließenden Umrechnung dieser Entfernungen

in geographische Koordinaten (Breitengrad, Längengrad und Höhe). Die Grundlage für die

Umrechnung bildet das Prinzip der Trilateration, das die Position des Empfängers durch die

Schnittpunkte von mindestens drei Kugeloberflächen, die um die Satelliten mit den Radien ihrer

Distanzen zum Empfänger gezogen werden, ermittelt [8]. Abbildung 2.4 zeigt das Prinzip der

Trilateration. In dieser Darstellung repräsentieren die Kugeln um die Satelliten 𝑆1, 𝑆2, und 𝑆3

die Distanzmessungen vom Empfänger zu diesen Punkten. Der GPS-Empfänger befindet sich

dort, wo sich alle drei Kugeloberflächen schneiden, was zu zwei möglichen Punkten führt: 𝑃

und 𝑃′. In der Regel ist einer der Punkte, wie 𝑃, nicht plausibel (z.B. liegt er weit außerhalb der

Erdoberfläche), und kann daher verworfen werden. Der übrig bleibende Schnittpunkt 𝑃′ gibt die

genaue Position des Empfängers an.

Die Entfernung 𝑟 zum Satelliten wird durch die Signaltransitzeit 𝑡 bestimmt, wobei die Lichtge-

schwindigkeit 𝑐 als Konstante dient, wie in der Gleichung 2.1 gezeigt:

𝑟 = 𝑐 · 𝑡 (2.1)

Unter Berücksichtigung der Erdatmosphäre und anderer Störfaktoren wird die Formel für die

Entfernungsberechnung erweitert, um Korrekturfaktoren einzuschließen. Die Position (𝑥, 𝑦, 𝑧)

des GPS-Empfängers in einem dreidimensionalen kartesischen Koordinatensystem, das im

Mittelpunkt der Erde zentriert ist, kann durch das Lösen des Gleichungssystems aus den

Entfernungen zu mindestens drei Satelliten bestimmt werden, wie in der Gleichung 2.2 gezeigt:



2 GRUNDLAGEN UND DESIGNENTWURF 12

Abbildung 2.4: Das Prinzip der Trilateration [8]

(𝑥 − 𝑥𝑆1
)2 + (𝑦 − 𝑦𝑆1

)2 + (𝑧 − 𝑧𝑆1
)2

= 𝑟2

1

(𝑥 − 𝑥𝑆2
)2 + (𝑦 − 𝑦𝑆2

)2 + (𝑧 − 𝑧𝑆2
)2

= 𝑟2

2

(𝑥 − 𝑥𝑆3
)2 + (𝑦 − 𝑦𝑆3

)2 + (𝑧 − 𝑧𝑆3
)2

= 𝑟2

3

(2.2)

Hierbei sind (𝑥𝑆𝑖 , 𝑦𝑆𝑖 , 𝑧𝑆𝑖 ) die Koordinaten der Satelliten und 𝑟𝑖 die gemessenen Entfernungen

zum Empfänger. Nach der Bestimmung der kartesischen Koordinaten des Empfängers können

diese in geographische Koordinaten (Längen-, Breiten- und Höhengrad) umgerechnet werden.

Die genaue Berechnung der GPS-Position erfordert zusätzlich die Anwendung von Korrekturen

für Signallaufzeitverzögerungen, die durch die Ionosphäre und Troposphäre verursacht werden,

sowie für die relativistische Zeitdilatation [9]. Durch die Integration dieser Korrekturen und die

Nutzung fortgeschrittener Algorithmen können moderne GPS-Empfänger Positionen mit einer

Genauigkeit von wenigen Metern ermitteln.

Geographische Koordinaten werden häufig im Grad-Minuten-Sekunden (DMS)-Format an-

gegeben. Um diese in das Dezimalgrad-Format umzurechnen, das in vielen geographischen

Informationssystemen und bei der Programmierung genutzt wird, kann folgende Methode ange-

wandt werden. Sei 𝐷 der Wert in Grad, 𝑀 der Wert in Minuten und 𝑆 der Wert in Sekunden der

ursprünglichen Koordinaten. Die Umrechnung in Dezimalgrad 𝐷dez kann mit der Gleichung 2.3

durchgeführt werden. Dabei ist zu beachten, dass bei südlichen Breitengraden und westlichen

Längengraden das Ergebnis negativ ist, um die Richtung zu kennzeichnen. Falls bei einer



2 GRUNDLAGEN UND DESIGNENTWURF 13

Umrechnung negative Werte entstehen, kann das Vorzeichen einfach umgekehrt werden, um die

ursprüngliche Richtung zu erhalten, wie in der Gleichung 2.4 gezeigt.

𝐷dez = 𝐷 +
𝑀

60
+

𝑆

3600
(2.3)

𝐷dez = −(𝐷 +
𝑀

60
+

𝑆

3600
) (2.4)

Beispiel: Die Umwandlung von 49° 30’ 0” in Dezimalgrad wird wie folgt Gleichung 2.5

durchgeführt:

49 +
30

60
+

0

3600
= 49.5◦ (2.5)

Diese Methode ermöglicht eine präzise und einfache Umrechnung von Koordinaten im DMS-

Format in das Dezimalgrad-Format, welches für weitere Berechnungen und Anwendungen

erforderlich ist.

2.2.3 Auswahl der seriellen Schnittstellen (UART)

Die serielle Kommunikation über UART (Universal Asynchronous Receiver/Transmitter) spielt

eine wesentliche Rolle in der Datenübertragung zwischen verschiedenen elektronischen Geräten,

insbesondere in Anwendungen wie der Kommunikation mit GPS-Modulen. UART ist ein

universell einsetzbarer Sender und Empfänger für asynchrone Datenübertragungen. Der Begriff

„asynchron“ bedeutet, dass kein Taktsignal zwischen Sender und Empfänger ausgetauscht wird,

wodurch eine flexible und einfache Verbindung zwischen verschiedenen Systemen ermöglicht

wird [3], [10].

Jedes übertragene Datenpaket beginnt mit einem Startbit, gefolgt von einer vorher festgelegten

Anzahl von Datenbits, optional einem Paritätsbit zur Fehlererkennung und einem oder mehreren

Stoppbits. Diese Struktur ermöglicht es dem Empfänger, jedes Wort aus dem kontinuierlichen

Datenstrom zu extrahieren, ohne dass eine externe Taktquelle erforderlich ist [3], [10]. Die

Abbildung 2.5 zeigt den zeitlichen Verlauf der Übertragung eines Bytes bei der Verwendung des

UART-Protokolls. Es illustriert die Zusammensetzung eines typischen „Frames“ aus Startbit,



2 GRUNDLAGEN UND DESIGNENTWURF 14

Datenbits, optionalem Paritätsbit und Stoppbits. Die Übertragung beginnt mit einem Startbit,

das auf niedrig (logisch 0) gesetzt ist, gefolgt von den Datenbits – beginnend mit dem Least

Significant Bit (Bit 0) bis zum Most Significant Bit (Bit 7). Optional kann ein Paritätsbit für die

Fehlererkennung eingefügt werden, gefolgt von einem oder mehreren Stoppbits, die auf hoch

(logisch 1) gesetzt sind, um das Ende des Frames anzuzeigen. Der gesamte Frame endet in einer

Ruhephase, bevor das nächste Byte beginnt.

Abbildung 2.5: Zeitlicher Verlauf der Übertragung eines Bytes bei der Verwendung des
UART-Protokolls [10]

UART-Schnittstellen sind aufgrund ihrer Einfachheit und der geringen Anzahl benötigter

Leitungen (hauptsächlich Senden (TX) und Empfangen (RX)) in vielen Mikrocontrollern und

GPS-Modulen integriert [3], [10]. Diese Integration führt zu geringeren Hardwarekosten und

einfacherer Implementierung im Vergleich zu komplexeren Kommunikationsprotokollen. Für

viele GPS-Anwendungen, wo die Datenrate und Komplexität relativ gering sind, bietet UART

eine kosteneffiziente Lösung. Die Tabelle 2.1 gibt einen Überblick über typische Baudraten,

die in der Praxis verwendet werden, und die entsprechenden Bitdauern in Mikrosekunden ( s).

Die Baudrate definiert, wie viele Bits pro Sekunde übertragen werden, und ist ein wesentlicher

Parameter bei der Konfiguration von UART-Schnittstellen. Eine höhere Baudrate ermöglicht eine

schnellere Datenübertragung, erfordert jedoch auch eine präzisere Zeitabstimmung zwischen

Sender und Empfänger. Standard-Baudraten wie 9600 oder 115200 Bits pro Sekunde sind in der

Industrie weit verbreitet und werden häufig für die Kommunikation mit GPS-Modulen eingesetzt,

da sie einen guten Kompromiss zwischen Geschwindigkeit und Zuverlässigkeit bieten.



2 GRUNDLAGEN UND DESIGNENTWURF 15

Tabelle 2.1: In der Praxis häufig verwendete Baudraten [10]

Baudrate (in bit/s) Bitdauer (in s)

2400 416,67

9600 104,17

19.200 52,08

38.400 26,04

57.600 17,36

115.200 8,68

Dies macht UART besonders geeignet für die Kommunikation mit GPS-Modulen. GPS-Module

senden Daten in einem formatierten Textformat, welches leicht durch eine UART-Schnittstelle

interpretiert werden kann. Zudem benötigen GPS-Module oft keine hohen Übertragungsraten,

was mit der typischen Leistungsfähigkeit von UART-Verbindungen übereinstimmt.

2.2.4 Auswahl des GPS Moduls

Der CD-PA1616D GNSS Patch-Antennenmodul, ausgestattet mit dem MediaTek GNSS-Chipsatz

MT3333, bietet eine Reihe von Merkmalen, die ihn für den Einsatz in GPS-Trackern besonders

geeignet machen. Abbildung 2.6 zeigt die Pins des CD-PA1616D GNSS Patch-Antennenmoduls.

Abbildung 2.6: Die Pins des CD-PA1616D GNSS Patch-Antennenmoduls [11]

Das Modul ist für die Nutzung der L1-Band GPS-Frequenz von 1575,42 MHz ausgelegt, welche

von GPS-Satelliten für zivile Zwecke genutzt wird, und kann ebenfalls die L1-Band GLONASS-

Frequenz von 1598,0625 bis 1605,375 MHz empfangen, die von GLONASS-Satelliten verwendet



2 GRUNDLAGEN UND DESIGNENTWURF 16

wird [11]. Mit einer hohen Empfindlichkeit von -165 dBm ist das Modul fähig, auch schwache

GPS-Signale zu empfangen, was in städtischen oder bewaldeten Gebieten von großer Bedeutung

ist, wo Signale leicht durch Gebäude oder Bäume blockiert werden können [11]. Es bietet eine

hohe Positionsgenauigkeit von bis zu wenigen Metern, wobei die Positionsgenauigkeit ohne Hilfe

bei 3,0 m und mit DGPS-Unterstützung bei 2,5 m liegt [11]. Zudem zeichnet sich das Modul

durch eine kurze Startzeit aus, mit 1 s für einen heißen Start, 33 s für einen warmen Start und 35

s für einen kalten Start, was für GPS-Tracker, die eine schnelle Standortbestimmung benötigen,

essentiell ist [11]. Der niedrige Stromverbrauch von 34 mA im Erfassungsmodus und 29 mA im

Tracking-Modus macht das Modul ideal für batteriebetriebene Geräte wie GPS-Tracker [11]. Mit

einem Gewicht von 6 g und den kompakten Abmessungen von 16,0 mm x 16,0 mm x 6,7 mm

eignet es sich hervorragend für den Einsatz in tragbaren Geräten [11].

Diese Eigenschaften, insbesondere die hohe Sensitivität, schnelle Startzeiten und geringer Strom-

verbrauch, machen den CD-PA1616D zu einer idealen Wahl für GPS-Tracking-Anwendungen,

bei denen Zuverlässigkeit und Effizienz entscheidend sind. Die kompakte Größe ermöglicht eine

einfache Integration in verschiedene Geräteformfaktoren.

2.3 Display mit I2C Schnittstelle Modul

2.3.1 Auswahl der seriellen Schnittstellen (I2C / TWI)

Die Inter-Integrated Circuit (I2C) Schnittstelle, auch als Two-Wire Interface (TWI) bekannt,

wurde in den frühen 1980er Jahren von Philips eingeführt und stellt eine wesentliche Komponente

in der Kommunikation zwischen verschiedenen integrierten Bausteinen auf einer Leiterplatte dar.

In diesem Abschnitt wird die Bedeutung und Funktionsweise dieser seriellen Schnittstelle erläutert

und begründet, warum sie insbesondere für die serielle Kommunikation in Anzeigegeräten von

Bedeutung ist.

I2C ist ein synchrones, seriell arbeitendes Bussystem, das mit nur zwei Leitungen - SCL (Serial

Clock) und SDA (Serial Data) - eine effiziente Kommunikation zwischen Mikrocontrollern,

A/D-Umsetzern, D/A-Umsetzern, Speichern und anderen Komponenten ermöglicht [3], [10].

Durch die geringe Anzahl an erforderlichen Leitungen reduziert sich der Verkabelungsaufwand

erheblich, was gerade in komplexen Schaltungen wie bei Anzeigegeräten einen erheblichen

Vorteil darstellt.



2 GRUNDLAGEN UND DESIGNENTWURF 17

Die I2C-Anschlüsse sind als Open-Collector- bzw. Open-Drain-Ausgänge konzipiert, was bedeutet,

dass mehrere Geräte gleichzeitig an den Bus angeschlossen werden können, ohne dass es zu

Konflikten kommt. Jedes Gerät kann die Leitung auf einen Low-Pegel ziehen, aber keines kann

aktiv einen High-Pegel setzen. Dies wird durch Pull-Up-Widerstände erreicht, die die Leitungen

im Ruhezustand auf High-Pegel halten [3], [10].

Bei Anzeigegeräten ist die Übertragung von Daten zwischen verschiedenen Komponenten wie

dem Mikrocontroller, Speicherbausteinen und dem Display-Controller von zentraler Bedeutung.

I2C/TWI bietet hierfür eine flexible und effiziente Lösung. Die Fähigkeit von I2C, mehrere

Geräte über nur zwei Leitungen zu verbinden, ermöglicht eine vereinfachte und kostengünstige

Implementierung.

Zusätzlich unterstützt das I2C-Protokoll sowohl Master- als auch Slave-Konfigurationen, was

bedeutet, dass ein Gerät (z.B. ein Mikrocontroller) als Master fungieren und die Kommunikation

mit mehreren Slaves (z.B. Display) steuern kann. Dies ist besonders nützlich in Anzeigegeräten,

wo der Mikrocontroller Informationen an verschiedene Komponenten des Displays senden muss

[3], [10].

Abbildung 2.7 stellt die Synchronisierung beim I2C-Protokoll dar. Sie zeigt, wie die Datenleitung

(SDA) und die Taktleitung (SCL) zusammenarbeiten, um eine synchrone Übertragung zu

ermöglichen. Die Daten auf der SDA-Leitung werden nur geändert, wenn das SCL-Signal auf

Low ist, was die Integrität der übertragenen Daten sicherstellt. Dieses Timing ist entscheidend,

da eine Änderung der Daten während eines High-Signals auf der SCL-Leitung als Start- oder

Stoppbedingung interpretiert werden könnte.

Abbildung 2.7: Synchronisierung beim I2C-Protokoll [10]



2 GRUNDLAGEN UND DESIGNENTWURF 18

Abbildung 2.8 zeigt die Start- und Stoppbedingungen im I2C-Protokoll. Die Startbedingung ist

durch einen Übergang von High zu Low auf der SDA-Leitung bei einem High-Signal auf der SCL-

Leitung gekennzeichnet. Dies signalisiert allen Geräten auf dem Bus, dass eine Kommunikation

beginnt. Die Stoppbedingung ist das Gegenteil, wobei die SDA-Leitung von Low zu High

übergeht, während SCL High ist, was das Ende einer Kommunikation anzeigt.

Abbildung 2.8: Start- und Stoppbedingungen im I2C-Protokoll [10]

In der Abbildung 2.9 wird ein vollständiger I2C-Kommunikationszyklus gezeigt, unterteilt in

zwei Teile. Im ersten Teil sendet der Master die Bausteinadresse (im Beispiel 0x35), gefolgt von

einem Lese- oder Schreibbit. Nach dem Erhalt der Adresse und des R/W-Bits von den Slaves

senden diese eine Bestätigung, das sogenannte Acknowledge, zurück an den Master. Der zweite

Teil zeigt die eigentliche Datenübertragung, wobei im Beispiel der Slave den Wert 0xA5 an den

Master sendet, gefolgt von einer weiteren Bestätigung durch den Master.

Zusammenfassend bietet I2C/TWI als serielle Schnittstelle in der Kommunikation von Anzei-

gegeräten eine Reihe von Vorteilen, darunter die Reduzierung des Verkabelungsaufwands, die

Möglichkeit, mehrere Geräte über nur zwei Leitungen zu verbinden, und die Unterstützung von

Master- und Slave-Konfigurationen. Diese Eigenschaften machen I2C/TWI zu einer idealen Wahl

für die effiziente und zuverlässige Kommunikation in Anzeigegeräten.

2.3.2 Auswahl des Displays mit I2C Schnittstelle

Das ausgewählte LCD-Display, das HD44780 1602A mit I2C-Schnittstelle, bietet aufgrund

seiner technischen Spezifikationen eine ideale Lösung für die Arbeit. Dieses Display weist

eine Auflösung von 16x2 auf, was die Darstellung von 16 Zeichen pro Zeile auf zwei Zeilen

ermöglicht, mit einer Sichtfläche von 12 mm x 56 mm, die für die Anzeige von GPS-Positionsdaten



2 GRUNDLAGEN UND DESIGNENTWURF 19

Abbildung 2.9: Ein vollständiger I2C-Kommunikationszyklus (Beispiel) [10]

ausreichend ist [12]. Die physische Größe des Displays beträgt 80 mm x 36 mm x 12,5 mm,

was es kompakt und geeignet für Anwendungen mit begrenztem Platz macht [12]. Es kann mit

einer Spannung von 3,3 V bis 5 V betrieben werden, was es kompatibel mit dem Mikrocontroller

ATmega88PA macht [12]. Das Display bietet eine weiße Hintergrundbeleuchtung und einen

Blickwinkel von 180 Grad, ideal für verschiedene Einsatzumgebungen und garantiert gute

Lesbarkeit auch bei schlechten Lichtverhältnissen [12]. Der geringe Stromverbrauch, insbesondere

der Hintergrundbeleuchtung mit nur 15 mA, macht das Display ideal für batteriebetriebene

Geräte wie GPS-Tracker [12]. Zudem verfügt es über eine I2C-Schnittstelle, die eine einfache

Verbindung mit dem Mikrocontroller ATmega88PA ermöglicht, wodurch es eine praktische Wahl

für viele Anwendungen darstellt. Abbildung 2.10 zeigt das LCD-Display mit I2C-Schnittstelle

1602A HD44780.

Diese Eigenschaften machen das LCD-Display mit I2C-Schnittstelle 1602A HD44780 zu einer

ausgezeichneten Wahl für viele Projekte. Seine kompakte Größe, flexible Spannungsversorgung,

gute Helligkeit, niedriger Stromverbrauch und einfache Verbindung machen es ideal für den

Einsatz in tragbaren Geräten wie GPS-Trackern.



2 GRUNDLAGEN UND DESIGNENTWURF 20

Abbildung 2.10: LCD-Display mit I2C-Schnittstelle 1602A HD44780 [12]

2.4 SD-Karte Modul

2.4.1 Auswahl der seriellen Schnittstellen (SPI)

Das SPI (Serial Peripheral Interface) ist eine weit verbreitete synchrone serielle Datenverbindungs-

technologie, die in eingebetteten Systemen zur Kommunikation zwischen einem Mikrocontroller

(Master) und einem oder mehreren Peripheriegeräten (Slaves) wie SD-Karten und Sensoren

genutzt wird [3], [10]. Die Master-Slave-Architektur des SPI-Netzwerks vereinfacht durch eine

klare Rollenverteilung das Design und die Implementierung von Systemen. SPI kennzeichnet

sich durch den Einsatz separater Datenleitungen für die Kommunikation: MOSI (Master Out,

Slave In) für die Datenübertragung vom Master zum Slave und MISO (Master In, Slave Out) für

die Datenübertragung vom Slave zum Master [3], [10]. Zusätzlich wird eine Taktleitung (SCK)

zur Synchronisierung und eine /SS-Leitung (Slave Select) zur Auswahl des kommunizierenden

Slaves verwendet [3], [10].

Die taktgesteuerte Datenübertragung ermöglicht eine präzise Steuerung des Datenflusses, indem

Daten entweder auf der steigenden oder fallenden Taktflanke übernommen werden. Die SPI-

Kommunikation zeichnet sich durch konfigurierbare Parameter aus, wie die Auswahl der

Datenübertragungsreihenfolge (MSB-first oder LSB-first) und der aktiven Taktflanke, was eine

flexible Anpassung an spezifische Anforderungen ermöglicht [3], [10]. Dank der Skalierbarkeit des

SPI kann das System leicht um zusätzliche Slaves erweitert werden, entweder durch Kaskadierung

oder durch eine Sternverbindung, was die Integration mehrerer Geräte vereinfacht.



2 GRUNDLAGEN UND DESIGNENTWURF 21

Wie in Abbildung 2.11 dargestellt, besteht die SPI-Verbindungsstruktur zwischen einem Master

und einem Slave aus vier Hauptleitungen. In der SPI-Verbindungsstruktur, die aus vier Haupt-

leitungen besteht, überträgt der Master Daten zum Slave über die MOSI-Leitung, während der

Slave über die MISO-Leitung Daten zum Master sendet. Das SCK-Signal, generiert vom Master,

dient der Synchronisierung der Datenübertragung, und das /SS-Signal ermöglicht die Auswahl

des aktiven Slaves für die Kommunikation. Diese klar definierten Leitungen und Signale tragen

zur Effizienz und Zuverlässigkeit der SPI-basierten Datenkommunikation bei.

Abbildung 2.11: SPI-Verbindungsstruktur zwischen einem Master und einem Slave [10]

Der Signalverlauf, wie in Abbildung 2.12 gezeigt, verdeutlicht das Timing der Datenübertragung.

Der Ruhezustand des Taktsignals (SCK) ist typischerweise auf 0 gesetzt, und die Datenübernahme

erfolgt mit der ersten aktiven Flanke des Taktsignals. Die Darstellung zeigt, wie die Datenbits

auf MOSI und MISO mit den Taktsignalen synchronisiert werden.

Abbildung 2.12: Signalverlauf der SPI-Datenübertragung [10]



2 GRUNDLAGEN UND DESIGNENTWURF 22

Die Entscheidung, das SPI (Serial Peripheral Interface) für die Kommunikation mit SD-

Kartenmodulen zu nutzen, gründet auf einer Reihe von Vorteilen, die dieses Protokoll bietet.

Die Geschwindigkeit der Datenübertragung über SPI ist im Vergleich zu anderen seriellen

Schnittstellen höher, was für Anwendungen, die eine schnelle Datenübertragung erfordern,

entscheidend ist (wie es bei SD-Karten der Fall ist). Die einfache Integration in die Systemar-

chitektur ist ein weiterer wichtiger Faktor. Die meisten Mikrocontroller, darunter auch die der

AVR-Familie, unterstützen das SPI-Protokoll nativ, was den Entwicklungsprozess vereinfacht

und die Notwendigkeit zusätzlicher Hardware reduziert.

SPI zeichnet sich zudem durch seine Effizienz aus, da es im Vergleich zu parallelen Schnittstellen

weniger Leitungen benötigt. Dies führt zu einer vereinfachten und kostengünstigeren Hardwa-

rekonfiguration, die besonders in Systemen mit begrenztem Platzangebot vorteilhaft ist. Die

Flexibilität von SPI, mehrere Geräte über denselben Bus steuern zu können, ermöglicht eine

effiziente Nutzung verschiedener Peripheriegeräte innerhalb eines Systems. Diese Fähigkeit zur

gleichzeitigen Anbindung mehrerer Geräte ist in eingebetteten Systemen, wo die Integration

verschiedenartiger Funktionalitäten auf engem Raum erforderlich ist, besonders wertvoll.

Zusammenfassend lässt sich sagen, dass das SPI-Protokoll aufgrund seiner hohen Übertragungs-

geschwindigkeit, der einfachen Implementierung, der Skalierbarkeit und der effizienten Nutzung

der Systemressourcen für die Kommunikation mit SD-Kartenmodulen in eingebetteten Systemen

eine ideale Wahl darstellt.

2.4.2 Grundlegende Begriffe von SD-Karte

Die SD-Karte (Secure Digital Card) ist ein weit verbreitetes Speichermedium, das in einer

Vielzahl von elektronischen Geräten verwendet wird, wie z.B. Digitalkameras, Mobiltelefonen

und Computern. Diese Karten nutzen den NAND-Flash-Speicher, eine Art von nichtflüchtigem

Speicher, der seine Daten auch ohne Stromversorgung behält [13]. Die Funktionsweise von

SD-Karten basiert auf der Speicherung von Daten in Form von elektrischen Ladungen, die

in den Speicherzellen des Flash-Chips gespeichert werden. Die Ladungen werden durch das

Anlegen einer Spannung an die Speicherzellen erzeugt und können in zwei Zuständen gespeichert

werden, die als logische 0 und logische 1 bezeichnet werden. Die Speicherzellen sind in Blöcken

organisiert, die wiederum in Sektoren unterteilt sind, um die Daten effizient zu verwalten und zu

lesen [14].



2 GRUNDLAGEN UND DESIGNENTWURF 23

Eine der Schlüsselfunktionen von SD-Karten ist ihre Fähigkeit, Daten über die Wear-Leveling-

Technik zu speichern und zu verwalten. Diese Technik verteilt die Schreibzugriffe gleichmäßig

über den Speicherchip, um die Lebensdauer der Karte zu verlängern [13]. Da jeder Bereich des

Flash-Chips nur eine begrenzte Anzahl von Schreibzyklen aushält, ist diese Technik entscheidend,

um eine vorzeitige Abnutzung zu vermeiden.

SD-Karten variieren primär in Speicherkapazität und Geschwindigkeit und lassen sich in drei

Hauptkategorien einteilen: SD (Secure Digital), SDHC (Secure Digital High Capacity) und

SDXC (Secure Digital eXtended Capacity), die jeweils unterschiedliche Speichergrößen und

Dateisysteme unterstützen [14].

SD-Karten sind die Grundform dieser Technologie und bieten Speicherkapazitäten von bis

zu 2 GB [14]. Sie arbeiten mit den Dateisystemen FAT12 oder FAT16, welche für kleinere

Datenvolumen konzipiert wurden. Diese Karten stellen eine gute Wahl für ältere oder weniger

anspruchsvolle Geräte dar, bei denen keine großen Datenmengen gespeichert werden müssen.

SDHC-Karten repräsentieren die nächste Generation mit Speicherkapazitäten von 4 GB bis 32 GB

[14]. Sie nutzen das FAT32-Dateisystem, das effizienter mit größeren Dateien und Kapazitäten

umgeht. SDHC-Karten eignen sich für Nutzer, die mehr Speicherplatz benötigen, etwa für

hochauflösende Fotos oder längere Videos.

SDXC-Karten sind die fortschrittlichste Kategorie mit Speicherkapazitäten von über 32 GB bis

zu 2 TB [14]. Sie verwenden das exFAT-Dateisystem, das für seine Fähigkeit, sehr große Dateien

und Speicher zu verwalten, entwickelt wurde. Diese Karten sind ideal für professionelle Anwen-

dungen, die extrem große Datenmengen erfordern, wie z.B. hochauflösendes Videoaufzeichnen,

ausgedehnte Fotosammlungen und umfangreiche Datenspeicherung.

Für die meisten Anwendungen, einschließlich GPS-Tracker, sind SD-Karten mit 2GB Spei-

cherplatz ausreichend. Diese SD-Karte ist mit einem 9-poligen Anschluss ausgestattet, der die

Verbindung mit einem Mikrocontroller über die serielle Schnittstelle (SPI) ermöglicht. Die

Tabelle 2.2 zeigt die Belegung der Kontakte einer SD-Karte und deren Anschluss an einen

Mikrocontroller im SPI-Modus.



2 GRUNDLAGEN UND DESIGNENTWURF 24

Tabelle 2.2: Belegung der Kontakte einer SD-Karte und deren Anschluss an einen
Mikrocontroller im SPI-Modus [13]

SD-Karten-Pin Funktion Mikrocontroller-Anschluss

DAT2
Nicht verwendet im

SPI-Modus
Nicht verbunden

DAT3 / SS Slave Select im SPI-Modus CS (Chip Select Pin)

CMD / MOSI Master Out Slave In MOSI (Master Out Slave In)

GND Erdung GND (Ground)

VCC Versorgungsspannung 5V Versorgung

CLK / SCK Taktleitung im SPI-Modus SCK (Serial Clock)

DAT0 / MISO
Master In Slave Out im

SPI-Modus
MISO (Master In Slave Out)

DAT1
Nicht verwendet im

SPI-Modus
Nicht verbunden



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 25

3 Umsetzung und Softwareentwicklung
In diesem Abschnitt wird die Umsetzung des GPS-Tracking-Systems beschrieben. Zunächst wird

die Hardware-Implementierung des Systems erläutert. Anschließend wird die Softwareentwick-

lung für den Mikrocontroller beschrieben. Softwareentwicklung umfasst Softwaredesign für

Mikrocontroller und Softwaredesign für PC-Anwendung. Die Software für Mikrocontroller wird

auf dem ATmega88PA Mikrocontroller ausgeführt und die Software für PC-Anwendung wird auf

einem Windows 10/11 PC/Laptop ausgeführt. Die Software für Mikrocontroller und die Software

für PC-Anwendung kommunizieren über die UART-Schnittstelle (RS232).

3.1 Bauteilverbindung

Die Hardware-Implementierung des GPS-Tracking-Systems umfasst die Verbindung der Hard-

warekomponenten. Die Hardwarekomponenten sind der Mikrocontroller, das GPS-Modul, das

LCD-Display und die SD-Karte. Die Verbindung der Hardwarekomponenten ist in Abbildung 3.1

dargestellt.

Die Abbildung 3.2 zeigt die detaillierten Verbindungen des GPS-Moduls mit dem Mikrocontroller.

Die Verbindung erfolgt über die UART-Schnittstelle. TXD des GPS-Moduls ist mit RXD des

Mikrocontrollers verbunden. VCC und GND sind die Kontakte für die Stromversorgung. RXD

des GPS-Moduls muss nicht mit dem Mikrocontroller verbunden werden, da der Mikrocontroller

keine Daten an das GPS-Modul sendet.

In diesem speziellen Szenario wird angegeben, dass der PC keine Daten an den Mikrocontroller

sendet und das GPS-Modul ebenfalls nur Daten an den Mikrocontroller sendet. Dies vermeidet

Konflikte, da es keinen Moment gibt, in dem der Mikrocontroller versuchen würde, gleichzeitig

Daten von beiden Geräten zu empfangen. Abbildung 3.3 zeigt die Kommunikation zwischen PC,

Mikrocontroller und GPS-Modul.

Anschließend wird die Verbindung des LCD-Displays mit dem Mikrocontroller in Abbildung 3.4

dargestellt. Die Verbindung erfolgt über das I2C-Schnittstelle. SDA und SCL sind die Kontakte

für die I2C-Kommunikation. VCC und GND sind die Kontakte für die Stromversorgung.



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 26

Abbildung 3.1: Verbindung der Hardwarekomponenten

Die Abbildung 3.5 zeigt die detaillierten Verbindungen der SD-Karte mit dem Mikrocontroller.

Die Verbindung erfolgt über die SPI-Schnittstelle. MOSI, MISO, SCK und CS sind die Kontakte

für die SPI-Kommunikation. VCC und GND sind die Kontakte für die Stromversorgung.

Zuletzt wird die Verbindung der Taster mit dem Mikrocontroller in Abbildung 3.6 dargestellt.

Die Taster sind über die Interrupts INT0 und INT1 mit dem Mikrocontroller verbunden. INT0

und INT1 sind die Kontakte für die Interrupts.



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 27

Abbildung 3.2: Verbindung des GPS-Moduls mit dem Mikrocontroller

Abbildung 3.3: UART-Kommunikation zwischen PC, Mikrocontroller und GPS-Modul

3.2 Entwicklung der Mikrocontroller-Firmware

Die Software für Mikrocontroller besteht aus zwei Hauptmodi: Messmodus und Lesemodus. Im

Messmodus werden GPS-Daten empfangen und verarbeitet. Die Daten werden dann in einem

Format auf der SD-Karte gespeichert. Im Lesemodus werden Daten von der SD-Karte gelesen

und über UART ausgegeben. Der Lesemodus liest die Daten bis zur zuletzt gespeicherten Adresse.

Listing 5.1 in Anhang zeigt den vollständigen Quellcode der Mikrocontroller-Firmware.

Zur Benutzerinteraktion und Feedback nutzt die Firmware externe Interrupts zur Verarbeitung

der Benutzereingaben über Tasten. Diese Eingaben ermöglichen es dem Benutzer, zwischen dem

Mess- und dem Lesemodus zu wechseln oder die Adresse im EEPROM zurückzusetzen. Ein LCD-



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 28

Abbildung 3.4: Verbindung des LCD-Displays mit dem Mikrocontroller

Abbildung 3.5: Belegung der Kontakte einer SD-Karte und deren Anschluss an einen
Mikrocontroller im SPI-Modus

Display wird verwendet, um dem Benutzer Feedback zu geben, was die Benutzerfreundlichkeit

erhöht.

Eine wichtige Funktion der Firmware ist die Speicherung der letzten Schreibadresse im EEPROM.

Dies ermöglicht es dem System, nach einem Neustart nahtlos fortzufahren und gewährleistet eine

kontinuierliche Datenaufzeichnung ohne Datenverlust.

Die Firmware beinhaltet außerdem Mechanismen zur Fehlerbehandlung, insbesondere bei der

Initialisierung der SD-Karte und beim Empfang der GPS-Daten. Fehlermeldungen werden auf

dem LCD-Display angezeigt, um den Benutzer über den Status zu informieren.



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 29

Abbildung 3.6: Verbindung der Taster mit dem Mikrocontroller

Die Interrupt Service Routinen (ISRs) spielen eine entscheidende Rolle bei der Interaktion des

Benutzers mit dem System. Durch die Verwendung von Hardware-Interrupts ermöglichen diese

Routinen eine sofortige Reaktion auf Benutzereingaben. Die ISR(INT0_vect) ist zuständig

für die Behandlung von Tastendrücken, die den Messmodus betreffen, und implementiert

eine Entprellung, um sicherzustellen, dass Tastendrücke korrekt interpretiert werden. Die

ISR(INT1_vect) behandelt Tastendrücke, die den Lesemodus steuern, und ermöglicht es

dem Benutzer, zwischen dem Lesemodus und dem normalen Betriebsmodus zu wechseln. In

beiden Routinen wird eine Verzögerung von 20 Millisekunden eingeführt, um das Prellen

der Tasten zu minimieren. Dies ist ein wichtiger Aspekt, da das Prellen zu falschen oder

mehrfachen Aktivierungen des Interrupts führen kann, was wiederum die Systemleistung und

Benutzererfahrung beeinträchtigen könnte.

Außerdem verwendet das Mikrocontroller-Firmware mehrere extern Bibliotheken, um die

Funktionalität zu erweitern und die Entwicklung zu erleichtern. Die Uart.h Bibliothek wird

verwendet, um die UART-Kommunikation zu ermöglichen. Die lcd.hBibliothek wird verwendet,

um die LCD-Operationen zu ermöglichen. Die spi.h Bibliothek wird verwendet, um die

SPI-Kommunikation zu ermöglichen. Die sd_card.h Bibliothek wird verwendet, um die SD-

Karten-Operationen zu ermöglichen. Bibliothek aufgrund der übermäßigen Länge des Quellcodes

nicht im Anhang aufgeführt. Trotzdem sind einige wichtige Funktionen von Bibliotheken in den

folgenden Unterabschnitten beschrieben.



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 30

3.2.1 Beschreibung von initializeSystem()

Im Folgenden wird die Funktionsweise der initializeSystem() Funktion detailliert beschrie-

ben. Diese Funktion spielt eine zentrale Rolle bei der Vorbereitung des Systems, indem sie

verschiedene Hardwarekomponenten und Schnittstellen initialisiert und konfiguriert, um deren

reibungslosen Betrieb zu gewährleisten. Die meisten Funktionen werden durch Aufrufen von

externen Bibliotheken realisiert. Die Struktur und die spezifischen Aktionen, die während der

Initialisierung durchgeführt werden, sind in Abbildung 3.7 visualisiert.

Abbildung 3.7: Struktur und Funktionsweise der initializeSystem() Funktion



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 31

Zeile 122-177 von Listing 5.1 in Anhang zeigt die Quellcode der initializeSystem(). Zu-

nächst wird die UART-Kommunikationsschnittstelle initialisiert, um die serielle Kommunikation

zwischen dem Mikrocontroller und externen Geräten wie PCs oder GPS-Modulen zu ermögli-

chen. Dies erfolgt durch Aufrufen der Funktion uart_init() mit spezifischen Parametern für

Baudrate und CPU-Frequenz. Die Baudrate wird auf 9600L festgelegt, weil das GPS-Modul mit

dieser Baudrate standardisiert. Außerdem wird CPU-Frequenz auf 3686400L festgelegt, weil die

CPU-Frequenz des Mikrocontrollers 3.686.400 Hz beträgt.

Anschließend erfolgt die Initialisierung des LCD-Displays, das zur Anzeige von Informationen

und Statusmeldungen dient. Die Funktion lcd_init() bereitet das Display vor und gewährleistet

die korrekte Darstellung der Daten. Hier wird die Anzahl der Zeilen und Spalten des Displays

festgelegt. In diesem Fall handelt es sich um ein 16x2-Zeichen-LCD-Display.

Die SPI-Schnittstelle wird konfiguriert, um die Kommunikation mit der SD-Karte zu ermög-

lichen. Durch den Aufruf von SPI_init wird der Mikrocontroller als SPI-Master festgelegt,

und die erforderlichen Übertragungseinstellungen werden definiert. Die Geschwindigkeit der

SPI-Kommunikation wird auf SPI_FOSC_16 festgelegt, um eine schnelle und zuverlässige

Datenübertragung zu gewährleisten. SPI_FOSC_16 bedeutet, dass die SPI-Frequenz gleich 1/16

der CPU-Frequenz ist.

Ein wichtiger Schritt ist der EEPROM-Adresslesevorgang, bei dem die zuletzt im EEPROM

gespeicherte Adresse ausgelesen wird. Diese Adresse ist entscheidend für die Fortführung der

Datenerfassung nach einem Neustart.

Die Initialisierung der SD-Karte wird überprüft, und im Fehlerfall werden entsprechende

Meldungen ausgegeben. Dies stellt sicher, dass die Datenspeicherung korrekt funktionieren kann.

Des Weiteren werden die Tasten und Interrupts konfiguriert. Die Pins für die Tasten werden als

Eingänge mit aktivierten internen Pull-Up-Widerständen festgelegt, und die Interrupts INT0 und

INT1 werden für die Erkennung von Tastendrücken konfiguriert. Abschließend wird durch den

Befehl sei() die globale Aktivierung der Interrupts durchgeführt, was für die Reaktionsfähigkeit

des Systems auf Benutzereingaben und externe Ereignisse unerlässlich ist.



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 32

Falls die Initialisierung erfolgreich war, wird eine entsprechende Meldung auf dem LCD-

Display angezeigt, um den Benutzer über den erfolgreichen Start des Systems zu informieren.

Abbildung 3.8 zeigt das LCD-Display mit der Meldung „Messung starten durch Taste 1“ nach

einem erfolgreichen Umschalten in den Messmodus. Diese Meldung informiert den Benutzer

darüber, dass das System bereit ist, die Datenerfassung zu starten.

Abbildung 3.8: Display mit der Meldung Messung starten durch Taste 1

Darüber hinaus zeigt Abbildung 3.9 das LCD-Display mit der Meldung „Weiter messen durch

Taste 1“ nach einem erfolgreichen Umschalten in den Messmodus. Diese Meldung informiert

den Benutzer darüber, dass das System bereit ist, die Datenerfassung fortzusetzen.

Abbildung 3.9: Display mit der Meldung Weiter messen durch Taste 1



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 33

Falls bei Initialisierung keine SD-Karte gefunden wurde, wird eine entsprechende Meldung auf

dem LCD-Display angezeigt, um den Benutzer über den Fehler zu informieren. Abbildung 3.10

zeigt das LCD-Display mit der Meldung „Keine SD-Karte!“ nach einem erfolglosen Initialisierung

der SD-Karte.

Abbildung 3.10: Display mit der Meldung Keine SD-Karte!

3.2.2 Beschreibung von lesenSDCard()

Die Funktion lesenSDCard() ist speziell dafür konzipiert, Daten von der SD-Karte zu lesen und

sie über die UART-Schnittstelle auszugeben. Abbildung 3.11 zeigt die Struktur und Funktionsweise

dieser Funktion.

Zeile 179-226 von Listing 5.1 in Anhang zeigt die Quellcode der lesenSDCard(). Zu Beginn

des Prozesses wird das LCD-Display gelöscht und eine Nachricht („Lesen...“) angezeigt, um

den Benutzer über den Beginn des Lesevorgangs zu informieren. Die Nachricht wird durch

den Aufruf der Funktion lcd_clear() und lcd_print() auf dem LCD-Display angezeigt.

Listing 3.1 und Listing 3.2 zeigt die Quellcode der lcd_clear() und lcd_print() Funktionen

von Bibliothek lcd.c.

1 void lcd_clear() {

2 lcd_nibble_out(0x01, 0); // clear display

3 lcd_nibble_out(0x80, 0);

4 char_counter = 0;

5 }

Listing 3.1: Quellcode der lcd_clear() Funktion von Bibliothek lcd.c



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 34

Abbildung 3.11: Struktur und Funktionsweise der lesenSDCard() Funktion

1 void lcd_print_str(char *str) {

2 while (*str != 0){

3 if(char_counter == LCD_WIDTH) lcd_nibble_out(LCD_ADDR_LINE2 ,0);

4 if(char_counter == (LCD_WIDTH*2)){

5 lcd_nibble_out(LCD_ADDR_LINE1 ,0);

6 char_counter = 0;

7 }

8 char_counter++;

9 lcd_nibble_out(*str++, 1);

10 }

11 }

Listing 3.2: Quellcode der lcd_print() Funktion von Bibliothek lcd.c



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 35

Anschließend wird die Baudrate für die UART-Kommunikation auf 115200L gesetzt, um eine

schnellere Datenübertragung zu ermöglichen. Dies erfolgt durch den Aufruf der Funktion

setBaudRate() mit dem entsprechenden Parameter. Listing 3.3 zeigt die Quellcode der

setBaudRate() Funktion.

1 void setBaudRate(unsigned long baud) {

2 uart_init(UART_BAUD_SELECT(baud, F_CPU));

3 }

Listing 3.3: Quellcode der setBaudRate() Funktion

Ein wesentlicher Schritt ist die Überprüfung der Lese- und Schreibadressen, um sicherzustellen,

dass nur die Daten gelesen werden, die bereits geschrieben wurden. Die Funktion prüft, ob die

Adresse zum Lesen (LesenAddr) kleiner als die Adresse zum Schreiben (SchreibenAddr) ist.

Dies verhindert das Lesen von unbeschriebenen Bereichen auf der SD-Karte.

Der eigentliche Lesevorgang wird durch die Funktion SD_readSingleBlock() von Bibliothek

sd_card.c durchgeführt, die einen Block von der SD-Karte liest und die Daten in einem

Puffer speichert. Die Ergebnisse des Lesevorgangs werden in einem Puffer (buf1) gespeichert.

Die Funktion gibt auch einen Statuscode (res1[0]) und einen Token (token1) zurück, der

den Beginn der Daten markiert. Listing 3.4 zeigt die Quellcode der SD_readSingleBlock()

Funktion von Bibliothek sd_card.c.

1 /*************************************************************************

2 Read single 512 byte block

3 token = 0xFE - Successful read

4 token = 0x0X - Data error

5 token = 0xFF - timeout

6 **************************************************************************/

7 uint8_t SD_writeSingleBlock(uint32_t addr, uint8_t *buf, uint8_t *token)

8 {

9 uint16_t readAttempts;

10 uint8_t res1, read;

11

12 // set token to none

13 *token = 0xFF;

14

15 // assert chip select

16 SPI_transfer(0xFF);



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 36

17 CS_ENABLE();

18 SPI_transfer(0xFF);

19

20 // send CMD24

21 SD_command(CMD24, addr, CMD24_CRC);

22

23 // read response

24 res1 = SD_readRes1();

25

26 // if no error

27 if(res1 == SD_READY)

28 {

29 // send start token

30 SPI_transfer(SD_START_TOKEN);

31

32 // write buffer to card

33 for(uint16_t i = 0; i < SD_BLOCK_LEN; i++) SPI_transfer(buf[i]);

34

35 // wait for a response (timeout = 250ms)

36 readAttempts = 0;

37 while(++readAttempts != SD_MAX_WRITE_ATTEMPTS)

38 if((read = SPI_transfer(0xFF)) != 0xFF) { *token = 0xFF; break;

}

39

40 // if data accepted

41 if((read & 0x1F) == 0x05)

42 {

43 // set token to data accepted

44 *token = 0x05;

45

46 // wait for write to finish (timeout = 250ms)

47 readAttempts = 0;

48 while(SPI_transfer(0xFF) == 0x00)

49 if(++readAttempts == SD_MAX_WRITE_ATTEMPTS) { *token = 0x00

; break; }

50 }

51 }

52

53 // deassert chip select



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 37

54 SPI_transfer(0xFF);

55 CS_DISABLE();

56 SPI_transfer(0xFF);

57

58 return res1;

59 }

Listing 3.4: Quellcode der SD_readSingleBlock() Funktion von Bibliothek sd_card.c

Wenn der Lesevorgang erfolgreich war (indiziert durch res1[0] == 0x00) und der korrekte

Start-Token empfangen wurde, werden die gelesenen Daten Zeichen für Zeichen über die

UART-Schnittstelle ausgegeben. Nach erfolgreichem Lesen eines Blocks wird die Leseadresse

(LesenAddr) um die Größe eines Sektors (512 KB) erhöht, um beim nächsten Lesevorgang den

nächsten Block zu lesen. Dieser Schritt ist essentiell für die kontinuierliche Datenverarbeitung.

Der Lesevorgang endet, sobald die Leseadresse die Schreibadresse erreicht oder überschreitet,

woraufhin der Lesemodus beendet und die Leseadresse zurückgesetzt wird. Abschließend wird

eine abschließende Meldung auf dem LCD-Display angezeigt und die Baudrate wird auf den

Standardwert (9600L) für das GPS-Modul zurückgesetzt, um die Kompatibilität mit anderen

Modulen zu gewährleisten. Abbildung 3.12 zeigt das LCD-Display mit der Meldung „Lesen...“

nach einem erfolgreichen Umschalten in den Lesemodus. Diese Meldung informiert den Benutzer

darüber, dass die Lesenvorgang jetzt durchgeführt wird.

Abbildung 3.12: Display mit der Meldung Lesen...

Falls alle Daten gelesen wurden, wird eine entsprechende Meldung auf dem LCD-Display ange-

zeigt, um den Benutzer über den Abschluss des Lesevorgangs zu informieren. Abbildung 3.13 zeigt



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 38

das LCD-Display mit der Meldung „Lesen erfolgreich!“ nach einem erfolgreichen Lesevorgang.

Abbildung 3.13: Display mit der Meldung Lesen erfolgreich!

3.2.3 Beschreibung von abholenGPSDaten()

Die Funktion abholenGPSDaten() ist für das Abholen, Analysieren und Verarbeiten der GPS-

Daten verantwortlich, die von einem angeschlossenen GPS-Modul über die UART-Schnittstelle

gesendet werden. Abbildung 3.14 zeigt die Struktur und Funktionsweise dieser Funktion.

Zeile 228-297 von Listing 5.1 in Anhang zeigt die Quellcode der abholenGPSDaten(). Zu

Beginn wird mit der Funktion uart_available() geprüft, ob GPS-Daten über die UART-

Schnittstelle verfügbar sind. Listing 3.5 zeigt die Quellcode der uart0_available() Funktion

von Bibliothek uart.c.

1 /*************************************************************************

2 Function: uart0_available()

3 Purpose: Determine the number of bytes waiting in the receive buffer

4 Input: None

5 Returns: Integer number of bytes in the receive buffer

6 **************************************************************************/

7 uint16_t uart0_available(void)

8 {

9 return (UART_RX0_BUFFER_SIZE + UART_RxHead - UART_RxTail) &

UART_RX0_BUFFER_MASK;

10 }

Listing 3.5: Quellcode der uart0_available() Funktion von Bibliothek uart.c



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 39

Abbildung 3.14: Struktur und Funktionsweise der abholenGPSDaten() Funktion



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 40

Sind Daten vorhanden, so werden sie sequenziell abgerufen, wobei ein besonderes Augenmerk

auf der Identifikation der 𝐺𝑁𝐺𝐺𝐴- Zeile liegt. Diese Zeilen enthalten wichtige Informationen

wie die aktuelle Zeit, Breiten- und Längengrade sowie die Fix-Qualität und sind daher für

die Datenerfassung von besonderem Interesse. Nach erfolgreicher Identifikation der 𝐺𝑁𝐺𝐺𝐴-

Zeile werden die nachfolgenden Zeichen in einem Array gespeichert, bis die gesamte Zeile

vollständig ist. Dies wird durch eine Schleife realisiert, die die eingehenden Zeichen bis zu einer

bestimmten Länge (37 Zeichen) speichert. Sobald eine vollständige 𝐺𝑁𝐺𝐺𝐴- Zeile empfangen

wurde, wird diese an die Funktion verarbeitenGPSLine() im Unterabschnitt 3.2.4 übergeben.

Diese Funktion ist dafür zuständig, die empfangenen Daten zu analysieren und für die weitere

Verwendung im System aufzubereiten.

Nach Abschluss der Verarbeitung oder bei Auftreten eines Fehlers werden der Zeilenindex und der

GNGGA-Index zurückgesetzt. Dieser Schritt stellt sicher, dass das System für die Verarbeitung

der nächsten Zeile bereit ist, und ermöglicht eine kontinuierliche und effiziente Datenerfassung.

3.2.4 Beschreibung von verarbeitenGPSLine()

Die Funktion verarbeitenGPSLine() verarbeitet eine 𝐺𝑁𝐺𝐺𝐴- Zeile, extrahiert daraus

wichtige Informationen wie Breiten- und Längengrad, Zeit und Fix-Status, und bereitet diese

Daten zur Anzeige und Speicherung vor. Abbildung 3.15 zeigt die Struktur und Funktionsweise

dieser Funktion.

Zeile 299-415 von Listing 5.1 in Anhang zeigt die Quellcode der verarbeitenGPSLine().

Die Funktion beginnt mit der Analyse der übergebenen Zeichenkette, die eine 𝐺𝑁𝐺𝐺𝐴- Zeile

darstellt. Eine vollständige 𝐺𝑁𝐺𝐺𝐴- Zeile enthält 15 Segmente, die durch Kommas getrennt

sind. Listing 3.6 zeigt ein Beispiel einer 𝐺𝑁𝐺𝐺𝐴- Zeile. Diese Zeile bedeutet, dass die aktuelle

Zeit 16:50:06.000 ist, die Breitengrad 22 Grad 41 Minuten 91.07 Sekunden Nord, der Längengrad

120 Grad 17 Minuten 23.83 Sekunden Ost, der GPS-Fix-Status 1 ist, die Anzahl der Satelliten 14

ist, die HDOP 0.79 ist, die Höhe 22.6 Meter ist und die Geoidenhöhe 18.5 Meter ist.

1 $GNGGA ,165006.000,2241.9107,N,12017.2383,E,1,14,0.79,22.6,M,18.5,M,,*42

Listing 3.6: Beispiel einer 𝐺𝑁𝐺𝐺𝐴- Zeile



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 41

Abbildung 3.15: Struktur und Funktionsweise der verarbeitenGPSLine() Funktion

Mit Hilfe der Funktion strtok() wird diese Zeile in einzelne Segmente zerlegt, indem sie an

Kommas getrennt wird. Anschließend wird die Zeitinformation extrahiert, indem die ersten sechs

Zeichen der Zeile verwendet werden, um Stunden, Minuten und Sekunden zu bestimmen und in

einem Zeitformat zusammenzufassen.

Für die Berechnung von Breiten- und Längengrad werden die Grad- und Minutenangaben aus

der 𝐺𝑁𝐺𝐺𝐴- Zeile in ein Dezimalformat konvertiert. Dieser Schritt ist entscheidend, um die

Daten in einem Format zu speichern, das für die weitere Verarbeitung und Anzeige geeignet ist.

Die Funktion atof() wird verwendet, um die Grad- und Minutenangaben in Dezimalzahlen



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 42

umzuwandeln. Die Umrechnung von Breiten- und Längengrad ist bereits im Unterabschnitt 2.2.2

detailliert beschrieben. Zusätzlich werden die Zeichen für Norden/Süden und Osten/Westen

extrahiert, um die geografische Lage genauer zu bestimmen.

Die Funktion prüft auch den GPS-Fix-Status, um sicherzustellen, dass ein gültiges GPS-Signal

vorliegt. Bei einem fehlenden GPS-Fix wird der Signalstatus entsprechend gesetzt, und die

Funktion endet ohne weitere Datenverarbeitung. Listing 3.7 zeigt die Quellcode zur Überprüfung

des GPS-Fix-Status. Wenn der Fix 0 ist, bedeutet dies, dass es keine gültigen GPS-Daten gibt (0

= kein Fix, 1 = Fix).

1 if (fix == 0) {

2 gpsSignalLost = true; // GPS-Signalstatus auf verloren setzen

3 return; // Zurück

4 }

5

6 gpsSignalLost = false;

Listing 3.7: Quellcode zur Überprüfung des GPS-Fix-Status

Sollte das GPS-Signal verloren gehen, wird eine entsprechende Warnmeldung auf dem LCD-

Display angezeigt, um den Benutzer über diesen Zustand zu informieren. Abbildung 3.16 zeigt

das LCD-Display mit der Meldung „Kein GPS-Signal!“ nach einem Verlust des GPS-Signals.

Abbildung 3.16: Display mit der Meldung Kein GPS-Signal!

Nach der erfolgreichen Verarbeitung werden die GPS-Daten auf einem LCD-Display dargestellt

und in einem Puffer für die spätere Speicherung auf einer SD-Karte vorbereitet. Um die Daten

auf dem LCD-Display besser darzustellen, werden die Daten in einem bestimmten Format



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 43

zusammengefasst und anschließend mit der Funktion lcd_setcursor() benutzt, um die

Daten auf dem LCD-Display in zwei Zeilen anzuzeigen. Listing 3.8 zeigt die Quellcode der

lcd_setcursor() Funktion von Bibliothek lcd.c.

1 void lcd_setcursor(uint8_t col, uint8_t row) {

2 uint8_t address;

3

4 /* compute the address according to the LCD layout */

5 switch (row) {

6 case 0: address = 0x00 + col; break; // first line

7 case 1: address = 0x40 + col; break; // second line

8 // add more cases if your LCD has more lines

9 default: return; // invalid row

10 }

11

12 /* set the address counter to this address */

13 lcd_nibble_out(0x80 | address, 0);

14 }

Listing 3.8: Quellcode der lcd_setcursor() Funktion von Bibliothek lcd.c

Die aufbereiteten Daten werden schließlich auf das LCD-Display ausgegeben. Abbildung 3.17

zeigt das LCD-Display mit den GPS-Daten nach einer erfolgreichen Verarbeitung. Diese

Darstellung informiert den Benutzer über die aktuellen GPS-Daten und ermöglicht eine visuelle

Überprüfung der Daten.

Abbildung 3.17: Display mit den GPS-Daten



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 44

Die gespeicherten Daten umfassen die aktuelle Zeit, den Breiten- und Längengrad sowie die

entsprechenden Himmelsrichtungen. Der eigentliche Speichervorgang wird durch die Funktion

speichernSDCard() von Bibliothek sd_card.c durchgeführt. Listing 3.9 zeigt die Quellcode

der speichernSDCard() Funktion von Bibliothek sd_card.c.

1 /*************************************************************************

2 Write data to SD card

3 Write single 512 byte block

4 token = 0x00 - busy timeout

5 token = 0x05 - data accepted

6 token = 0xFF - response timeout

7 **************************************************************************/

8 uint8_t SD_writeSingleBlock(uint32_t addr, uint8_t *buf, uint8_t *token)

9 {

10 uint16_t readAttempts;

11 uint8_t res1, read;

12

13 // set token to none

14 *token = 0xFF;

15

16 // assert chip select

17 SPI_transfer(0xFF);

18 CS_ENABLE();

19 SPI_transfer(0xFF);

20

21 // send CMD24

22 SD_command(CMD24, addr, CMD24_CRC);

23

24 // read response

25 res1 = SD_readRes1();

26

27 // if no error

28 if(res1 == SD_READY)

29 {

30 // send start token

31 SPI_transfer(SD_START_TOKEN);

32

33 // write buffer to card

34 for(uint16_t i = 0; i < SD_BLOCK_LEN; i++) SPI_transfer(buf[i]);



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 45

35

36 // wait for a response (timeout = 250ms)

37 readAttempts = 0;

38 while(++readAttempts != SD_MAX_WRITE_ATTEMPTS)

39 if((read = SPI_transfer(0xFF)) != 0xFF) { *token = 0xFF; break; }

40

41 // if data accepted

42 if((read & 0x1F) == 0x05)

43 {

44 // set token to data accepted

45 *token = 0x05;

46

47 // wait for write to finish (timeout = 250ms)

48 readAttempts = 0;

49 while(SPI_transfer(0xFF) == 0x00)

50 if(++readAttempts == SD_MAX_WRITE_ATTEMPTS) { *token = 0x00;

break; }

51 }

52 }

53

54 // deassert chip select

55 SPI_transfer(0xFF);

56 CS_DISABLE();

57 SPI_transfer(0xFF);

58

59 return res1;

60 }

Listing 3.9: Quellcode der speichernSDCard() Funktion von Bibliothek sd_card.c

Die aufbereiteten Daten werden schließlich auf die SD-Karte geschrieben. Dabei wird die

Schreibadresse für den nächsten Schreibvorgang aktualisiert und im EEPROM gespeichert,

um die Kontinuität der Datenerfassung zu sichern. Zusätzlich überwacht die Funktion die

Speicherkapazität und setzt die Schreibadresse zurück, sollte das Ende des Speicherbereichs

erreicht werden, um einen kontinuierlichen Betrieb des Systems zu gewährleisten. Durch Software

HxD-Editor kann die gespeicherte Daten auf der SD-Karte überprüft werden. Abbildung 3.18

und Abbildung 3.19 zeigt zwei Sektor-Daten als Beispiel auf der SD-Karte gespeichert sind.



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 46

Abbildung 3.18: Sektor 0 auf der SD-Karte

Abbildung 3.19: Sektor 1 auf der SD-Karte

3.2.5 Beschreibung von EEPROM_speicherAddress()

Die Funktion EEPROM_speicherAddress() speichert eine Adresse im EEPROM des Mikro-

controllers und ermöglicht es, den Fortschritt der Datenspeicherung auf der SD-Karte auch nach

einem Neustart des Systems nahtlos fortzusetzen.

Listing 3.10 zeigt die Quellcode der EEPROM_speicherAddress(). Zu Beginn der Funktion

wird mittels der Funktion eeprom_busy_wait() sichergestellt, dass das EEPROM nicht durch

andere Prozesse belegt ist.

1 void EEPROM_speicherAddress(uint32_t Addr) { // Adresse im EEPROM speichern

2 eeprom_busy_wait(); // Warten, dass EEPROM nicht besetzt ist

3 eeprom_update_block((const void*)&Addr, &speicher_Addr , sizeof(Addr)); //

Adresse im EEPROM speichern

4 }

Listing 3.10: Quellcode der EEPROM_speicherAddress() Funktion

Sobald sichergestellt ist, dass das EEPROM verfügbar ist, wird die übergebene Adresse (Addr)

an einer spezifischen Stelle im EEPROM gespeichert. Diese Aktion wird durch die Funktion

eeprom_update_block() durchgeführt, die im Gegensatz zu eeprom_write_block() die

vorhandenen Daten mit den neuen Daten vergleicht und nur schreibt, wenn ein Unterschied

festgestellt wird. Diese Vorgehensweise reduziert den Verschleiß des EEPROMs, da unnötige

Schreibvorgänge vermieden werden.

3.2.6 Beschreibung von EEPROM_lesenAddress()

Die Funktion EEPROM_lesenAddress() dient dazu, eine gespeicherte Adresse aus dem EE-

PROM des Mikrocontrollers auszulesen. Diese Adresse wird verwendet, um die Position zu

bestimmen, an der die Datenspeicherung auf einem externen SD-Karte, fortgesetzt werden soll.



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 47

Listing 3.11 zeigt die Quellcode der EEPROM_lesenAddress(). Analog zur Funktion

EEPROM_speicherAddress() wird zu Beginn der Funktion eeprom_busy_wait() aufge-

rufen, um sicherzustellen, dass das EEPROM zum Lesen bereit und nicht durch andere Prozesse

belegt ist.

1 uint32_t EEPROM_lesenAddress(void) { // Adresse im EEPROM lesen

2 uint32_t Addr; // Adresse

3 eeprom_busy_wait(); // Warten, dass EEPROM nicht besetzt ist

4 eeprom_read_block((void*)&Addr, &speicher_Addr , sizeof(Addr)); // Adresse

im EEPROM lesen

5 return Addr; // Adresse zurückgeben

6 }

Listing 3.11: Quellcode der EEPROM_lesenAddress() Funktion

Sobald das EEPROM als verfügbar bestätigt wurde, nutzt die Funktion eeprom_read_block(),

um die am Speicherort speicher_Addr hinterlegte Adresse auszulesen. Diese ausgelesene

Adresse wird dann in die Variable Addr übertragen. Nach dem erfolgreichen Auslesen der

Adresse wird dieser Wert von der Funktion zurückgegeben. Diese Adresse wird im System dann

genutzt, um den nächsten Schreibvorgang auf der SD-Karte an der korrekten Stelle fortzusetzen.

3.2.7 Beschreibung von ISR(INT0_vect)

Die Funktion ISR(INT0_vect), speziell konzipiert für die Handhabung von Aktionen, die durch

das Drücken des BUTTON1_PIN ausgelöst werden. Diese Funktion ermöglicht diese Funktion die

Interaktion des Benutzers mit dem System, insbesondere das Umschalten zwischen dem Mess-

und dem Lesemodus sowie die manuelle Initialisierung des Systems. Abbildung 3.20 zeigt die

Struktur und Funktionsweise dieser Funktion.

Listing 3.12 zeigt die Quellcode der ISR(INT0_vect). Zunächst wird durch eine kurze Verzö-

gerung die Entprellung des Tasters sichergestellt. Diese Verzögerung (_delay_ms(20)) hilft,

unerwünschte Signale durch das mechanische Prellen des Tasters zu eliminieren, was für die

Zuverlässigkeit der Tastererkennung entscheidend ist.



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 48

Abbildung 3.20: Struktur und Funktionsweise der ISR(INT0_vect) Funktion

1 ISR(INT0_vect) // INT0

2 {

3 _delay_ms(20); // Entprellung (20ms)

4 if (!(PIND & (1 << BUTTON1_PIN))) { // Prüfen, ob BUTTON1_PIN gedrückt ist

(0 = gedrückt, 1 = nicht gedrückt)

5 if (Lesen_modus) { // Wenn im Lesemodus

6 return; // Zurück

7 }

8 if (PIND & (1 << BUTTON2_PIN)) { // Prüfen, ob BUTTON2_PIN NICHT gedrü

ckt ist (0 = nicht gedrückt, 1 = gedrückt)

9 Messung_modus = !Messung_modus; // Messung Modus umschalten (0 =

AUS, 1 = AN)

10 } else { // Wenn BUTTON2_PIN auch gedrückt ist (0 = gedrückt, 1 =

nicht gedrückt)

11 EEPROM_speicherAddress(0x00000000); // Setzen der zuletzt

gespeicherten Adresse auf 0x00000000 während der manuellen

Initialisierung

12 initializeSystem(); // System neu initialisieren

13 }

14 }

15 }

Listing 3.12: Quellcode der ISR(INT0_vect) Funktion



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 49

Im Anschluss prüft die ISR den Zustand des Tasters. Sollte der Taster, der den Interrupt

ausgelöst hat, aktiv sein, wird untersucht, ob sich das System im Lesemodus befindet. Um

Interferenzen während des Leseprozesses zu vermeiden, wird in diesem Modus keine weitere

Aktion durchgeführt, und die ISR wird beendet.

Falls BUTTON1_PIN gedrückt und das System befindet sich nicht im Lesemodus, wird überprüft,

ob BUTTON2_PIN nicht gedrückt ist. In diesem Fall wird der Messmodus (Messung_modus)

umgeschaltet. Dies erlaubt es, den Messvorgang zu starten oder zu stoppen.

Ein besonderes Feature ist die Möglichkeit zur Systeminitialisierung: Wenn zusätzlich zum

BUTTON1_PIN auch der BUTTON2_PIN gedrückt, so führt dies zur Initialisierung des Systems.

Dabei wird zuerst die Adresse im EEPROM auf 0x00000000 gesetzt, was für eine manuelle

Initialisierung steht. Anschließend wird das System durch Aufruf von initializeSystem() in

Unterabschnitt 3.2.1 neu initialisiert.

3.2.8 Beschreibung von ISR(INT1_vect)

Die Funktion ISR(INT1_vect), speziell konzipiert für die Handhabung von Aktionen, die durch

das Drücken des BUTTON2_PIN ausgelöst werden. Diese Funktion ermöglicht diese Funktion die

Interaktion des Benutzers mit dem System, insbesondere das Umschalten zwischen dem Mess-

und dem Lesemodus sowie die manuelle Initialisierung des Systems. Abbildung 3.21 zeigt die

Struktur und Funktionsweise dieser Funktion.

Listing 3.13 zeigt die Quellcode der ISR(INT1_vect). Ähnlich wie bei der zuvor beschrie-

benen ISR in Unterabschnitt 3.2.7 beginnt auch diese Routine mit einer Entprellungsphase

_delay_ms(20), um zuverlässige Signale zu gewährleisten und Fehlauslösungen durch das

mechanische Prellen des Tasters zu verhindern.

1 ISR(INT1_vect)

2 {

3 _delay_ms(20); // Entprellung (20ms)

4 if (!(PIND & (1 << BUTTON2_PIN))) { // Prüfen, ob BUTTON2_PIN gedrückt ist

(0 = gedrückt, 1 = nicht gedrückt)

5 if (Messung_modus) { // Wenn im Messmodus

6 return; // Zurück

7 }

8 if (Lesen_modus) { // Wenn im Lesemodus , verhindere Reinitialisierung



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 50

Abbildung 3.21: Struktur und Funktionsweise der ISR(INT1_vect) Funktion

9 return; // Zurück

10 }

11 if (PIND & (1 << BUTTON1_PIN)) { // Prüfen, ob BUTTON1_PIN NICHT gedrü

ckt ist (0 = nicht gedrückt, 1 = gedrückt)

12 initializeSystem(); // System neu initialisieren

13 Lesen_modus = !Lesen_modus; // Lesen Modus umschalten (0 = AUS, 1 =

AN)

14 Messung_modus = 0; // Wenn im Lesemodus , deaktivieren des Messmodus

(0 = AUS, 1 = AN)

15 } else { // Wenn BUTTON1_PIN auch gedrückt ist (0 = gedrückt, 1 =

nicht gedrückt)

16 EEPROM_speicherAddress(0x00000000); // Setzen der zuletzt

gespeicherten Adresse auf 0x00000000 während der manuellen

Initialisierung

17 initializeSystem(); // System neu initialisieren

18 }

19 }

20 }

Listing 3.13: Quellcode der ISR(INT1_vect) Funktion



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 51

Im Anschluss wird der Zustand von BUTTON2_PIN überprüft. Falls dieser gedrückt ist, evaluiert

die ISR, ob sich das System in einem speziellen Modus befindet, wie dem Mess- oder Lesemodus.

Sollte eine dieser Bedingungen erfüllt sein, wird die ISR ohne Ausführung weiterer Aktionen

beendet, um die Integrität dieser Betriebsmodi zu wahren.

Falls der BUTTON1_PIN nicht aktiv ist, leitet die ISR eine Neuinitialisierung des Systems ein,

gefolgt von einem Umschalten in den Lesemodus, sofern das System sich nicht bereits in

einem spezifischen Modus befindet. Diese Aktion stellt sicher, dass der Lesemodus aktiviert

wird, während gleichzeitig der Messmodus deaktiviert bleibt, um eine klare Trennung der

Funktionalitäten zu gewährleisten.

Eine manuelle Initialisierung des Systems wird durchgeführt, sowohl BUTTON1_PIN als auch

BUTTON2_PIN gedrückt sind, wird das System manuell initialisiert. Dabei wird die im EEPROM

gespeicherte Adresse auf 0x00000000 zurückgesetzt und das System neu gestartet.

Bis hierhin wurden die wichtigsten Funktionen und Routinen des Mikrocontroller-Programms auf

einem ATmega88PA Mikrocontroller entwickelt. Diese Funktionen ermöglichen die effiziente

Handhabung von GPS-Daten, die serielle Kommunikation mit einem GPS-Modul, die Speicherung

von Daten auf einer SD-Karte und die Interaktion mit dem Benutzer über Tasten. Im nächsten

Abschnitt wird die Entwicklung der PC-Anwendung zur Verarbeitung und Speicherung von

GPS-Daten in einer GPX-Datei beschrieben.

3.3 Entwicklung der PC-Anwendung

Die Entwicklung der PC-Anwendung für die Verarbeitung und Speicherung von GPS-Daten in

einer GPX-Datei erfolgte in der Entwicklungsumgebung Visual Studio Community 2022. Das

Hauptziel der Anwendung ist die effiziente Handhabung von Daten, die über einen COM-Port

von einem GPS-Empfänger empfangen werden. Die Software ist in der Lage, die empfangenen

Daten in ein spezifisches Format zu konvertieren und sie in einer GPX-Datei zu speichern, welche

für die weitere Verwendung in Karte geeignet ist. Die Anwendung wurde in C++ entwickelt und

nutzt die Windows-API für die serielle Kommunikation und die Dateiverwaltung.

Im Folgenden wird die Softwareentwicklung und Funktionalität der PC-Anwendung eingehend

erläutert. Listing 5.2 in Anhang zeigt den vollständigen Quellcode der PC-Anwendung, der in

Visual Studio Community 2022 entwickelt wurde. Die Anwendung beginnt mit der Einbindung



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 52

der erforderlichen Header-Dateien, die für die serielle Kommunikation und die Dateiverwal-

tung benötigt werden. Dazu gehören windows.h, iostream, fstream, string, ctime und

Shlobj.h. Die Windows-API wird für die serielle Kommunikation und die Dateiverwaltung ge-

nutzt, während die anderen Header-Dateien für die Verarbeitung und Speicherung von GPS-Daten

in einer GPX-Datei benötigt werden.

Zunächst setzt die Anwendung die Locale-Einstellungen durch den Aufruf der Funktion

setlocale(LC_ALL, ), um eine korrekte Darstellung von Umlauten und Sonderzeichen

wie „ä“, „ö“, „ü“ und „ß“ zu gewährleisten. Der Benutzer wird daraufhin aufgefordert, die

Nummer des zu verwendenden COM-Ports anzugeben, was für die Kommunikation mit dem

GPS-Empfänger entscheidend ist. Nach Eingabe der COM-Port-Nummer durch den Benutzer

öffnet und konfiguriert das Programm diesen Port mit spezifischen Parametern wie Baudrate,

Bytegröße, Stopbits und Parität, um eine stabile und korrekte Datenübertragung zu gewährleisten.

Zeile 52-89 von Listing 5.2 zeigt die Quellcode zur Konfiguration des COM-Ports. Darin wird

BaudRate auf 115200 gesetzt, um die Datenübertragungsgeschwindigkeit mit Mikrocontroller

bei Lesenmodus zu synchronisieren.

Anschließend ermittelt die Software den Pfad zum Benutzerdokumente-Ordner und erstellt dort

einen speziellen Ordner für die Speicherung der GPX-Dateien. Daraufhin generiert das Programm

einen Dateinamen für die GPX-Datei, basierend auf dem aktuellen Datum und der Uhrzeit, um

Eindeutigkeit zu gewährleisten. Das Herzstück der Anwendung ist die Datenerfassung vom COM-

Port und deren anschließende Verarbeitung. Die empfangenen Daten werden kontinuierlich gelesen

und relevante Informationen wie GPS-Positionen und Zeitstempel extrahiert und verarbeitet.

Unterabschnitt 3.3.5 wird detailliert beschreiben, wie die GPS-Daten verarbeitet und in eine

GPX-Datei gespeichert werden.

Die verarbeiteten GPS-Daten werden in das GPX-Format konvertiert und in der vorbereiteten Datei

gespeichert, was für die spätere Nutzung der Daten in Karte entscheidend ist. Nach erfolgreicher

Speicherung der Daten schließt das Programm die GPX-Datei und gibt den COM-Port frei, um

keine Ressourcen unnötig zu belegen und den Port für andere Anwendungen verfügbar zu machen.

Zum Abschluss informiert die Anwendung den Benutzer über den Speicherort der GPX-Datei,

was ein wichtiger Schritt zur Erleichterung der Lokalisierung und anschließenden Verwendung

der Datei ist. Unterabschnitt 3.3.6 wird detailliert beschreiben, wie die GPX-Datei zum Schluss

bearbeitet werden.



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 53

3.3.1 Beschreibung von COMDatenLesen()

Die Funktion COMDatenLesen(HANDLE hCom, std::string& daten) ermöglicht das Lesen

von Daten, die über einen COM-Port empfangen werden, und ist somit entscheidend für die

Interaktion zwischen dem GPS-Empfänger und der PC-Anwendung. Abbildung 3.22 zeigt die

Struktur und Funktionsweise dieser Funktion.

Abbildung 3.22: Struktur und Funktionsweise der COMDatenLesen() Funktion

Listing 3.14 zeigt den Quellcode der COMDatenLesen() Funktion. Zunächst prüft die Funktion

die Gültigkeit des übergebenen COM-Port-Handles (hCom), um sicherzustellen, dass eine Verbin-

dung zum COM-Port besteht und dieser bereit ist, Daten zu empfangen. Die Hauptaufgabe der

Funktion ist es, Daten vom COM-Port unter Verwendung der Win32 API-Funktion ReadFile()

zu lesen. Diese liest die Daten, die über den COM-Port gesendet werden, und speichert sie

zunächst in einem temporären Puffer. Anschließend werden die Daten aus dem Puffer in den

übergebenen String daten übertragen.

1 bool COMDatenLesen(HANDLE hCom, std::string& daten) {

2 char puffer[64]; // Puffer für die empfangenen Daten (64 Bytes)

3 DWORD geleseneBytes; // Anzahl der gelesenen Bytes

4 if (ReadFile(hCom, puffer, sizeof(puffer) - 1, &geleseneBytes , nullptr)

&& geleseneBytes > 0) { // Lesen Sie die Daten vom COM-Port

5 puffer[geleseneBytes] = ’\0’; // Nullterminator hinzufügen

6 daten = puffer; // Daten in den String schreiben

7 return true; // Erfolg

8 }

9 return false; // Misserfolg



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 54

10 }

Listing 3.14: Quellcode der COMDatenLesen Funktion

Während des Leseprozesses wird kontinuierlich überprüft, ob Daten erfolgreich empfangen

wurden, indem die Anzahl der gelesenen Bytes (geleseneBytes) überwacht wird. Bei erfolg-

reichem Empfang von Daten (d.h., die Anzahl der gelesenen Bytes ist größer als Null) wird der

Inhalt des Puffers in den String daten kopiert. Die Funktion gibt einen booleschen Wert zurück,

der den Erfolg des Lesevorgangs anzeigt. Dies erlaubt es der aufrufenden Funktion, entsprechend

auf erfolgreiche oder fehlgeschlagene Lesevorgänge zu reagieren. Im Falle eines Fehlschlags

wird ein Fehlerstatus zurückgegeben, der signalisiert, dass keine Daten gelesen wurden.

Abbildung 3.23 zeigt die Benutzeroberfläche der PC-Anwendung zur Konfiguration des COM-

Ports. Der Benutzer kann hier die Nummer des zu verwendenden COM-Ports eingeben, um die

Verbindung zum GPS-Empfänger herzustellen.

Abbildung 3.23: Benutzeroberfläche zur Konfiguration des COM-Ports

3.3.2 Beschreibung von aktuellesDatumHolen()

Die Funktion aktuellesDatumHolen() zielt darauf ab, das aktuelle Datum zu ermitteln und

in einem standardisierten Format zurückzugeben. Ihre Rolle ist entscheidend für die Erstellung

präziser Zeitstempel in den GPX-Daten. Abbildung 3.24 zeigt die Struktur und Funktionsweise

dieser Funktion.

Der Prozess beginnt mit dem Abruf der aktuellen Systemzeit, wobei die C++ Standardbibliothek

und die Funktion time(nullptr) zum Einsatz kommen, um die Zeit als time_t-Objekt zu

erhalten. Dieses Objekt wird anschließend in eine tm-Struktur umgewandelt, die detaillierte

Informationen über das Jahr, den Monat, den Tag und weitere Zeitkomponenten enthält. Diese

Umwandlung erfolgt durch die Funktion localtime_s().

Nach der Umwandlung in eine strukturierte Form wird das Datum mit der Funktion strftime()

in ein standardisiertes Format gebracht, üblicherweise „JJJJ-MM-TT“ (Jahr-Monat-Tag). Das

formatierte Datum wird dann als String zurückgegeben und kann in der Anwendung verwendet



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 55

Abbildung 3.24: Struktur und Funktionsweise der aktuellesDatumHolen() Funktion

werden, um die Zeitstempel in den GPX-Dateien zu hinzufügen. Listing 3.15 zeigt den Quellcode

der aktuellesDatumHolen() Funktion.

1 std::string aktuellesDatumHolen() { // Aktuelles Datum abrufen

2 time_t jetzt = time(nullptr); // Aktuelle Zeit abrufen

3 struct tm zeitstruktur; // Zeitstruktur erstellen

4 char datumPuffer[80]; // Puffer für das Datum (80 Bytes)

5 localtime_s(&zeitstruktur , &jetzt); // Zeit in die Zeitstruktur

konvertieren

6 strftime(datumPuffer , sizeof(datumPuffer), "%Y-%m-%d", &zeitstruktur); //

Format: JJJJ-MM-TT

7 return datumPuffer; // Datum zurückgeben

8 }

Listing 3.15: Quellcode der aktuellesDatumHolen Funktion

3.3.3 Beschreibung von aktuellesDatumUndUhrzeitHolen()

Die Funktion aktuellesDatumUndUhrzeitHolen() hat die Aufgabe, sowohl das aktuelle

Datum als auch die genaue Uhrzeit zu ermitteln und in einem spezifischen Format zurückzugeben.

Die Bedeutung dieser Funktion erstreckt sich Benennung der GPX-Dateien. Abbildung 3.25 zeigt

die Struktur und Funktionsweise dieser Funktion.

Der Prozess beginnt mit der Erfassung der aktuellen Systemzeit, wobei ein time_t-Objekt



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 56

Abbildung 3.25: Struktur und Funktionsweise der aktuellesDatumUndUhrzeitHolen()
Funktion

verwendet wird, um die gegenwärtige Zeit in Sekunden seit dem Unix-Epoch zu erhalten. Die

erfasste Zeit wird dann in eine strukturierte, für Menschen lesbare Form umgewandelt, indem die

Funktion localtime_s() genutzt wird, um die time_t-Zeit in eine tm-Struktur zu konvertieren.

Diese Struktur beinhaltet detaillierte Informationen über das Datum und die Uhrzeit.

Anschließend wird das Datum und die Uhrzeit in ein spezifisches Format gebracht, typischer-

weise „JJJJMMTT_HHMMSS“ (JahrMonatTag_StundeMinuteSekunde), durch den Einsatz der

Funktion strftime(). Nach der Formatierung gibt die Funktion das Datum und die Uhrzeit als

String zurück, der für die Benennung der GPX-Dateien verwendet werden kann. Listing 3.16

zeigt den Quellcode der aktuellesDatumUndUhrzeitHolen() Funktion.

1 std::string aktuellesDatumUndUhrzeitHolen() { // Aktuelles Datum und

Uhrzeit abrufen

2 time_t jetzt = time(nullptr); // Aktuelle Zeit abrufen

3 struct tm zeitstruktur; // Zeitstruktur erstellen

4 char datumPuffer[80]; // Puffer für das Datum (80 Bytes)

5 localtime_s(&zeitstruktur , &jetzt); // Zeit in die Zeitstruktur

konvertieren

6 strftime(datumPuffer , sizeof(datumPuffer), "%Y%m%d_%H%M%S", &zeitstruktur);

// Format: JJJJMMTT_HHMMSS

7 return datumPuffer; // Datum und Uhrzeit zurückgeben

8 }

Listing 3.16: Quellcode der aktuellesDatumUndUhrzeitHolen Funktion



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 57

3.3.4 Beschreibung von BreitenLängengradKonvertieren()

Die Funktion BreitenLängengradKonvertieren() besteht darin, die Rohdaten der GPS-

Koordinaten, die in Form von Strings vorliegen, in ein standardisiertes Dezimalformat zu

konvertieren. Diese Konvertierung ist entscheidend für die korrekte Darstellung und Weiterverar-

beitung der geografischen Positionen. Abbildung 3.26 zeigt die Struktur und Funktionsweise

dieser Funktion.

Abbildung 3.26: Struktur und Funktionsweise der BreitenLängengradKonvertieren()
Funktion

Der Prozess beginnt mit der Entgegennahme von zwei Parametern: dem Rohwert der Koordinaten

(rohwert) in einem nicht-standardisierten Format und der geografischen Richtung (richtung),

die durch einen Charakter wie „N“ für Norden, „S“ für Süden, „E“ für Osten und „W“ für Westen

angegeben wird. Die Funktion extrahiert zunächst den relevanten Teil des Rohwertstrings und

bereitet ihn auf die Konvertierung vor. Die geografische Richtung bestimmt das Vorzeichen der

konvertierten Koordinate, wobei für Breiten im Süden und Längen im Westen das Vorzeichen

negativ wird. Anschließend konvertiert die Funktion die Koordinaten in das Dezimalgradformat,

ein weit verbreitetes Format, das von den meisten geografischen Informationssystemen und GPS-

Geräten genutzt wird. Die konvertierten Koordinaten werden als String im Dezimalgradformat

zurückgegeben, was eine einfache und effiziente Weiterverarbeitung und Speicherung der

GPS-Daten ermöglicht.

Besonders hervorzuheben ist hier die Anpassung die Anzahl der Ziffern für Breiten- und

Längengrade. Dies bedeutet, dass die Anzahl der Ziffern für Breiten- und Längengrade für



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 58

verschiedene Orte auf der Welt unterschiedlich sind. Z.B ist die Längengrade in Shaoxing,

China gegen 120.XXXX E, während die Längengrade in Lippstadt, Deutschland gegen 8.XXXX

E. Listing 3.17 und Listing 3.18 zeigt, wie automatisch die Anzahl der Ziffern für Breiten-

und Längengrade bestimmt wird, um immer 4 Dezimalstellen zu speichern. Die Anpassung

der Anzahl der Ziffern für Breiten- und Längengrade ist entscheidend für die Genauigkeit der

GPS-Daten. Wenn die Anzahl der Ziffern für Breiten- und Längengrade nicht richtig eingestellt

ist, kann es zu einer falschen Positionierung auf der Karte führen.

1 size_t breiteEndePos = nachricht.find(’ ’, breitePos + 5); // Position des

Leerzeichens nach der Breite

2 if (breiteEndePos == std::string::npos || breiteEndePos > laengePos) { //

Wenn das Leerzeichen nicht gefunden wird oder die Position größer als

die Länge ist

3 breiteEndePos = laengePos; // Position der Länge

4 }

5 std::string rohBreite = nachricht.substr(breitePos + 5, breiteEndePos -

breitePos - 5); // Rohwert der Breite extrahieren

Listing 3.17: Quellcode der BreitengradKonvertieren Funktion

1 size_t laengeEndePos = nachricht.find(’ ’, laengePos + 5); // Position des

Leerzeichens nach der Länge

2 if (laengeEndePos == std::string::npos) { // Wenn das Leerzeichen nicht

gefunden wird

3 laengeEndePos = nachricht.length(); // Länge des Strings

4 }

5 std::string rohLaenge = nachricht.substr(laengePos + 5, laengeEndePos -

laengePos - 5); // Rohwert der Länge extrahieren

Listing 3.18: Quellcode der LängengradKonvertieren Funktion

Zuerst wird die Position des Leerzeichens nach der Breite bzw. Länge gefunden, um die Anzahl

der Ziffern für Breitengrade und Längengrade zu bestimmen. Wenn das Leerzeichen nicht

gefunden wird, wird die Position der Länge des Strings verwendet. Anschließend wird der

Rohwert der Breite bzw. Länge extrahiert. Die Anzahl der Ziffern für Breiten- und Längengrade

wird dann automatisch bestimmt, um immer 4 Dezimalstellen zu speichern.



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 59

3.3.5 Erstellung von GPX-Datei

GPX, kurz für GPS Exchange Format, ist ein XML-Schema, das für den Austausch geografischer

Informationen zwischen verschiedenen Systemen konzipiert wurde. Eine GPX-Datei besteht

hauptsächlich aus Wegpunkten, Routen und Tracks, die geografische Standorte und Routenin-

formationen speichern [9]. Die folgenden Elemente sind typischerweise in einer GPX-Datei

enthalten:

1. GPX-Header: Die GPX-Datei beginnt mit einem Header, der die Version des GPX-

Schemas und die XML-Definitionen enthält. Der Header definiert auch die Struktur der

Datei und die Art der enthaltenen Daten.

2. Wegpunkte: Ein Wegpunkt ist ein geografischer Punkt, der durch seine geografischen

Koordinaten (Breiten- und Längengrad) definiert ist. Jeder Wegpunkt kann zusätzliche

Informationen wie Name, Beschreibung, Höhe und Zeitstempel enthalten.

3. Routen: Eine Route ist eine geplante Reise oder ein Weg, der aus einer Reihe von

Wegpunkten besteht. Jeder Wegpunkt in einer Route ist mit dem vorherigen und dem

nächsten Wegpunkt verbunden, um eine zusammenhängende Route zu bilden.

4. Tracks: Ein Track ist eine aufgezeichnete Spur oder ein Pfad, der aus einer Reihe von

Wegpunkten besteht. Jeder Wegpunkt in einem Track ist mit dem vorherigen und dem

nächsten Wegpunkt verbunden, um eine kontinuierliche Spur zu bilden.

GPX wird hauptsächlich von GPS-Geräten und Softwareanwendungen zur Speicherung und

zum Austausch von geografischen Informationen verwendet. Es ist wegen seiner Einfachheit und

Effizienz bei der Speicherung von GPS-spezifischen Informationen weit verbreitet. Im Gegensatz

zu KML (Keyhole Markup Language), einem anderen geografischen Dateiformat, das von Google

Earth und Google Maps verwendet wird [15], ist GPX ein offenes Format, das von einer Vielzahl

von Anwendungen und Geräten unterstützt wird.

Ein Beispiel für eine GPX-Datei ist in Listing 3.19 dargestellt. Diese Datei enthält einen Header

und einen Track mit vier Wegpunkten. Darin wird <trkpt lat="51.6894" lon="8.3422">

als ein Wegpunkt definiert, der die geografischen Koordinaten 51.6894 Breitengrad und 8.3422

Längengrad enthält. Der <time> Tag enthält den Zeitstempel des Wegpunkts. Die <trkseg> und

<trk> Tags definieren die Struktur des Tracks, der aus einer Reihe von Wegpunkten besteht.



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 60

1 <?xml version="1.0" encoding="UTF-8"?>

2 <gpx xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance" xmlns="http://

www.topografix.com/GPX/1/1" xsi:schemaLocation="http://www.topografix.

com/GPX/1/1 http://www.topografix.com/GPX/1/1/gpx.xsd" version="1.1"

creator="https://gpx.studio">

3 <trk>

4 <trkseg>

5 <trkpt lat="51.6894" lon="8.3422">

6 <time >2024-02-16T14:09:40Z</time>

7 </trkpt>

8 <trkpt lat="51.6894" lon="8.3422">

9 <time >2024-02-16T14:10:01Z</time>

10 </trkpt>

11 <trkpt lat="51.6894" lon="8.3422">

12 <time >2024-02-16T14:10:02Z</time>

13 </trkpt>

14 <trkpt lat="51.6894" lon="8.3422">

15 <time >2024-02-16T14:10:03Z</time>

16 </trkpt>

17 </trkseg>

18 </trk>

19 </gpx>

Listing 3.19: Beispiel einer GPX-Datei

Um die GPX-Datei zu speichern, wird zunächst einen Ordner mit dem Name „GXP_Datei“ im

Benutzerdokumente-Ordner erstellt. Listing 3.20 zeigt den Quellcode, wie der Ordner erstellt

werden. Dann wird eine GPX-Datei im erstellten Ordner erstellt. Das Name der GPX-Datei wird

aus dem aktuellen Datum und der Uhrzeit generiert, um Eindeutigkeit zu gewährleisten. Z.B

wird die GPX-Datei Output_20240216_140940.gpx genannt, wenn die Datei am 16. Februar

2024 um 14:09:40 Uhr erstellt wird. Listing 3.21 zeigt den Quellcode, wie die GPX-Datei erstellt

werden.

1 char dokumentePfad[MAX_PATH]; // Puffer für den Dokumentenpfad (MAX_PATH

Bytes)

2 HRESULT result = SHGetFolderPathA(NULL, CSIDL_PERSONAL , NULL,

SHGFP_TYPE_CURRENT , dokumentePfad); // Benutzerdokumente -Ordner abrufen

3

4 if (!SUCCEEDED(result)) { // Wenn der Dokumentenpfad nicht abgerufen werden



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 61

kann, wird eine Fehlermeldung ausgegeben

5 std::cerr << "Fehler beim Abrufen des Dokumentenpfads" << std::endl; //

Fehlermeldung

6 return 1; // Beendet das Programm , wenn der Dokumentenpfad nicht

abgerufen werden kann

7 }

8

9 std::string gxpOrdnerPfad = std::string(dokumentePfad) + "\\GXP_Datei"; //

GXP_Datei -Ordnerpfad

Listing 3.20: Quellcode der GPXOrdnerErstellen Funktion

1 std::string datumUndUhrzeit = aktuellesDatumUndUhrzeitHolen(); // Aktuelles

Datum und Uhrzeit abrufen

2 std::string dateiName = gxpOrdnerPfad + "\\Output_" + datumUndUhrzeit + ".

gpx"; // Dateiname

Listing 3.21: Quellcode der GPXDateiErstellen Funktion

Die empfangenen Daten werden dann in die generierte GPX-Datei geschrieben. Um die emp-

fangenen Daten besser lesen zu können, wird die empfangenen Daten in Terminal ausgegeben.

Listing 3.22 zeigt den Quellcode, wie die empfangenen Daten in Terminal ausgegeben werden.

Dann wird die empfangenen Daten mit dem Format von Listing 3.19 in die GPX-Datei geschrieben.

Zeile 162-183 von Listing 5.2 zeigt den Quellcode, wie die empfangenen Daten in die GPX-Datei

geschrieben werden.

1 std::cout << "Empfangene Daten: " << nachricht << std::endl; // Empfangene

Daten im Terminal anzeigen

Listing 3.22: Quellcode der TerminalAusgabe Funktion

Schließlich, wenn die empfangenen Daten „Lesen: AUS“ sind, wird die GPX-Datei mit einem

Befehl zum Schließen der Dateistreams ordnungsgemäß beendet. Das Unterabschnitt 3.3.6 wird

die Abschlussfunktionen des Programms beschreiben.

3.3.6 Beschreibung von abschluss

Dieser Teil des Programms ist dafür verantwortlich, alle offenen Prozesse und Ressourcen korrekt

zu schließen und sicherzustellen, dass die gesammelten Daten vollständig und korrekt gespeichert

werden. Abbildung 3.27 zeigt die Struktur und Funktionsweise dieses Abschnitts.



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 62

Abbildung 3.27: Struktur und Funktionsweise des abschluss Abschnitts

Der wichtigste Schritt ist das korrekte Schließen der GPX-Datei. Dies umfasst das Einfügen der

abschließenden XML-Tags, die für das Format einer GPX-Datei erforderlich sind. Diese Schritte

sind unerlässlich, um eine gültige und standardkonforme GPX-Datei zu gewährleisten, die von

anderen Anwendungen und Geräten gelesen werden kann. Listing 3.23 zeigt den Quellcode des

Abschnitts abschluss.

1 abschluss:

2 // Abschluss der GPX-Datei schreiben

3 gpxDatei << " </trkseg >\n"; // Tracksegment -Element

4 gpxDatei << " </trk>\n"; // Track-Element

5 gpxDatei << "</gpx>"; // GPX-Datei-Ende

6 gpxDatei.close(); // GPX-Datei schließen

7 CloseHandle(hCom); // COM-Port schließen

8

9 std::cout << "Die Daten wurden in " << dateiName << " gespeichert." << std

::endl; // Erfolgsmeldung

10 system("pause"); // Programm anhalten

11

12 return 0; // Programm beenden

Listing 3.23: Quellcode des Abschnitts abschluss



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 63

Nachdem alle notwendigen Daten in die GPX-Datei geschrieben wurden, wird die Datei mit

einem Befehl zum Schließen der Dateistreams ordnungsgemäß beendet. Diese Aktion stellt

sicher, dass alle geschriebenen Daten gespeichert und die Datei korrekt abgeschlossen wird,

was einen eventuellen Datenverlust verhindert. Ein weiterer wesentlicher Schritt ist die Freigabe

des COM-Ports. Dies wird erreicht, indem der COM-Port mit der Funktion CloseHandle()

geschlossen wird, um sicherzustellen, dass der Port für andere Anwendungen verfügbar ist und

keine Ressourcen unnötig belegt werden. Schließlich wird dem Benutzer eine Erfolgsmeldung

angezeigt, die den Speicherort der GPX-Datei enthält. Das Programm wird angehalten, um dem

Benutzer Zeit zu geben, die Meldung zu lesen, bevor es beendet wird. Abbildung 3.28 zeigt die

Benutzeroberfläche der PC-Anwendung nach dem Abschluss des Datenverarbeitungsprozesses.

Die Abbildung 3.29 zeigt den Inhalt der GPX-Datei „Output_20240216_143811.gpx“ als Beispiel.

Abbildung 3.28: Benutzeroberfläche der PC-Anwendung nach Abschluss des
Datenverarbeitungsprozesses

Abbildung 3.29: Inhalt der GPX-Datei „Output_20240216_143811.gpx“



3 UMSETZUNG UND SOFTWAREENTWICKLUNG 64

Bis hierhin wurden die wichtigsten Aspekte der Softwareentwicklung und die Funktionalitäten der

PC-Anwendung zur Verarbeitung und Speicherung von GPS-Daten entwickelt. Die beschriebenen

Funktionen und Abläufe bilden das Fundament der Anwendung und ermöglichen eine effiziente

Handhabung von GPS-Daten, die von UART-Schnittstelle des Mikrocontrollers gesendet werden.



4 TEST UND ERGEBNISSE 65

4 Test und Ergebnisse
In diesem Abschnitt werden zuerst die Testmethoden und die Testergebnisse des GPS-Trackers

beschrieben. Anschließend wird die Analyse der GPS-Daten in verschiedenen Situationen

durchgeführt. Schließlich werden die Ergebnisse der Tests und Validierungen zusammengefasst.

4.1 Funktionstests

4.1.1 Vorgehensweise von Funktionstest

Um die Funktionalität des GPS-Trackers zu testen, werden verschiedene Tests durchgeführt,

die auf spezifischen Anforderungen basieren. Zuerst wird jede Komponente des GPS-Trackers

einzeln getestet, um sicherzustellen, dass sie ordnungsgemäß funktioniert.

Mikrocontroller-Funktionalitätstest: Ein Basisprogramm wird auf den ATmega88PA Mikrocon-

troller hochgeladen, um seine Funktionalität zu überprüfen. Dieses Programm könnte einfache

Aufgaben ausführen, wie z.B. das Blinken einer LED.

Datenübertragungstest: Die Datenübertragung an einen PC wird getestet, indem einige Test-

daten über die UART-Schnittstelle (RS232) an den PC gesendet werden. Die Korrektheit der

übertragenen Daten wird durch das Terminalprogramm wie PuTTY überprüft.

Display-Test: Das Display wird getestet, indem einige Sätze oder Zahlen auf dem Display

angezeigt werden. Die Korrektheit der Anzeige wird überprüft.

SD-Karten-Speicherfunktionstest: Daten werden auf der SD-Karte gespeichert und anschließend

ausgelesen, um die Speicherfunktion zu überprüfen. Die Korrekigkeit der gespeicherten Daten

wird durch das Software HxD überprüft.

GPS-Modul-Empfangstest: Das GPS-Modul wird getestet, indem es in einer offenen Umgebung

platziert wird, um die GPS-Daten zu empfangen. Prüfen, ob das GPS-Modul die GPS-Koordinaten

korrekt empfängt und per UART-Schnittstelle an den Mikrocontroller sendet. Die Korrekigkeit

von GPS-Koordinaten wird durch Vergleich mit den tatsächlichen Koordinaten überprüft.

Anschließend wird die Gesamtfunktionalität des GPS-Trackers getestet, um sicherzustellen,

dass alle Komponenten ordnungsgemäß miteinander interagieren. Die Tests umfassen die



4 TEST UND ERGEBNISSE 66

Überprüfung der Tracking-Funktion mit Zeitintervallen, die Speicherfunktion auf der SD-Karte

und die Datenübertragung an einen PC. Die PC-Anwendung für den Empfang und die Speicherung

der Daten wird ebenfalls getestet.

4.1.2 Ergebnisse von Funktionstest

Das Hauptaugenmerk liegt hier auf den Funktionstests. Die geforderten Funktionstests stammen

aus der Anforderungstabelle in Tabelle 1.1. Die Ergebnisse der Tests sind in Tabelle 4.1 aufgeführt.

Zusammenfassend kann gesagt werden, dass alle Funktionstests erfolgreich durchgeführt wurden

und die Anforderungen erfüllt sind.

Tabelle 4.1: GPS Tracker Testergebnisse

Test-Nr Testbeschreibung Ergebnis

1

Überprüfung der

Funktionalität des

ATmega88PA

Mikrocontrollers.

Erfolgreich abgeschlossen

2

Test der Genauigkeit und

Zuverlässigkeit des

GPS-Moduls.

Genauigkeit und Zuverlässigkeit bestätigt

3

Überprüfung der Anzeige der

GPS-Koordinaten auf dem

Display.

GPS-Koordinaten werden ordnungsgemäß ange-

zeigt

4
Test der Tracking-Funktion

mit Zeitintervallen.

Koordinaten werden in den festgelegten Intervallen

(1 Sekunde) aufgezeichnet und gespeichert

5
Test der Speicherfunktion auf

der SD-Karte.

Daten können erfolgreich auf der SD-Karte gespei-

chert und ausgelesen werden

6

Überprüfung der

Datenübertragung an einen

PC.

Datenübertragung über UART-Schnittstelle erfolg-

reich

7

Test der PC-Anwendung für

den Empfang und die

Speicherung der Daten.

Software empfängt und speichert Daten im GPX-

Format ordnungsgemäß



4 TEST UND ERGEBNISSE 67

4.2 Demonstrationsbeispiel

Nachdem die Funktionalität des GPS-Trackers erfolgreich getestet wurde, wird der GPS-Tracker

in der Praxis getestet, um die Genauigkeit und Zuverlässigkeit des GPS-Tracking-Systems

zu überprüfen. Die folgenden Schritte beschreiben das Testverfahren und die Validierung der

Funktionalitäten des GPS-Tracking-Systems in der Praxis:

Der GPS-Tracker wird an einem Fahrrad befestigt. Dann wird das Fahrrad in Freien (z.B. auf einer

Straße) platziert. Nachdem das GPS-Modul die GPS-Koordinaten empfangen hat (Dies kann

30 Sekunden bis mehrere Minuten dauern, abhängig von der Umgebung). Zunächst das LCD

Display wird geprüft, ob die GPS-Koordinaten korrekt angezeigt werden. Dann wird das Fahrrad

für eine bestimmte Zeit bewegt. Während des Tests wird das GPS-Modul die GPS-Koordinaten

in den festgelegten Zeitintervallen aufzeichnen.

Später werden die gespeicherten GPS-Koordinaten über die UART-Schnittstelle per PC-

Anwendung empfangen und im GPX-Format gespeichert. Die GPX-Datei wird in Kartendiensten

wie gpx.studio importiert, um die zurückgelegte Strecke anzuzeigen. Die aufgezeichneten GPS-

Koordinaten werden mit einem Handy verglichen, um die Genauigkeit und Zuverlässigkeit der

GPS-Daten zu bewerten.



4 TEST UND ERGEBNISSE 68

4.2.1 Testverfahren und Validierung der Funktionalitäten

Abbildung 4.1 und Abbildung 4.2 zeigt die aufgezeichnete Strecke mit orange Farbe im gpx.studio.

Das Fahrrad wurde für ca. 10 Minuten bewegt. Die Übertragung der GPS-Daten an den PC

und die Speicherung der Daten im GPX-Datei dauerte ca. 1 Minute. Abbildung 4.3 zeigt die

aufgezeichnete Strecke mit einem Handy. Vergleich der aufgezeichneten Strecke im gpx.studio

und mit dem Handy zeigt, dass die GPS-Koordinaten fast exakt der tatsächlich zurückgelegten

Strecke entsprechen.

Abbildung 4.1: aufgezeichnete Strecke im 1. Test in gpx.studio



4 TEST UND ERGEBNISSE 69

Abbildung 4.2: aufgezeichnete Strecke im 1. Test in gpx.studio (vergrößert)



4 TEST UND ERGEBNISSE 70

Abbildung 4.3: aufgezeichnete Strecke im 1. Test mit Handy



4 TEST UND ERGEBNISSE 71

4.2.2 Testverfahren und Validierung der Zuverlässigkeit

Um die Zuverlässigkeit der GPS-Daten zu bewerten, werden mehrere Tests durchgeführt. Das

zweiten Test wird in Abbildung 4.4 und Abbildung 4.5 mit blaue Farbe gezeigt. Das Fahrrad

wurde für ca. 30 Minuten bewegt. Wie im ersten Test, die aufgezeichnete Strecke im gpx.studio

zeigt, dass die GPS-Koordinaten fast exakt der tatsächlich zurückgelegten Strecke entsprechen.

Abbildung 4.4: aufgezeichnete Strecke im 2. Test in gpx.studio



4 TEST UND ERGEBNISSE 72

Abbildung 4.5: aufgezeichnete Strecke im 2. Test in gpx.studio (vergrößert)



4 TEST UND ERGEBNISSE 73

4.2.3 Testverfahren und Validierung in höhe Geschwindigkeit

Um die Genauigkeit und Zuverlässigkeit der GPS-Daten in höheren Geschwindigkeiten zu

bewerten, wird ein Auto-Test durchgeführt. Das Auto wurde für ca. 3 Minuten auf einer

Stadtstraße gefahren. Die Geschwindigkeit des Autos betrug ca. 50 km/h. Die aufgezeichnete

Strecke wird in Abbildung 4.6 und Abbildung 4.7 mit rote Farbe gezeigt.

Abbildung 4.6: aufgezeichnete Strecke im Auto-Test in gpx.studio



4 TEST UND ERGEBNISSE 74

Abbildung 4.7: aufgezeichnete Strecke im Auto-Test in gpx.studio (vergrößert)



4 TEST UND ERGEBNISSE 75

4.3 Ergebnisse der Test- und Validierungsphase

Nach der Analyse der GPS-Daten unter verschiedenen Bedingungen lassen sich die Ergebnisse

der Test- und Validierungsphase zusammenfassen. Die Genauigkeit der GPS-Daten ist sehr

hoch, was bedeutet, dass die aufgezeichnete Strecke fast exakt der tatsächlich zurückgelegten

Strecke entspricht. Ebenso zeichnet sich die Zuverlässigkeit der GPS-Daten aus, da die GPS-

Koordinaten in den festgelegten Zeitintervallen korrekt aufgezeichnet werden. Die Übertragung

der GPS-Daten an den PC erfolgt zuverlässig, und die Integrität der übertragenen Daten wird

gewährleistet, was die Funktionalität der PC-Anwendung bestätigt. Diese arbeitet wie erwartet,

und die gespeicherten Daten im GPX-Format sind korrekt und können problemlos in Kartendienste

wie gpx.studio importiert werden, um die zurückgelegte Strecke visuell darzustellen. Auch bei

höheren Geschwindigkeiten, wie im Auto-Test, zeigt der GPS-Tracker eine hohe Genauigkeit und

Zuverlässigkeit. Die aufgezeichnete Strecke entspricht fast exakt der tatsächlich zurückgelegten

Strecke, was die Eignung des GPS-Trackers für verschiedene Anwendungsbereiche bestätigt.

Gemäß dem Konstruktionsprinzip des GPS-Trackers ist bekannt, dass das Zeitintervall jeder

Aufzeichnung eine Sekunde beträgt. Die Analyse der GPX-Dateien zeigt, dass die Größe der

GPX-Datei von der Bewegungsgeschwindigkeit abhängt. Bei höheren Geschwindigkeiten, wie

im Auto-Test, ist die Größe der GPX-Datei in eine gleiche Strecke kleiner als bei niedrigeren

Geschwindigkeiten, wie im Fahrrad-Test. Allerdings ist die Genauigkeit bei höheren Geschwin-

digkeiten schlechter als bei niedrigeren Geschwindigkeiten. Dies ist darauf zurückzuführen, dass

der Abstand zwischen den Aufzeichnungen umso größer ist, je höher die Geschwindigkeit ist.

Außerdem dauert die Übertragung der GPS-Daten auf den PC und die Speicherung der Daten im

GPX-Datei dauerte etwa 1 Minute pro 10 Minuten aufgezeichneter Strecke.



5 ZUSAMMENFASSUNG UND AUSBLICK 76

5 Zusammenfassung und Ausblick

5.1 Zusammenfassung der Arbeitsergebnisse

In dieser Arbeit wurde die Entwicklung eines GPS-Trackers vorgestellt, der durch den Einsatz

eines Low-Cost Mikrocontrollers realisiert wurde. Das primäre Ziel dieses Projektes war es,

eine kosteneffiziente, dennoch zuverlässige und benutzerfreundliche Lösung für die Positionsbe-

stimmung zu entwickeln, die flexibel in verschiedenen Anwendungsbereichen eingesetzt werden

kann. Besondere Aufmerksamkeit galt der sorgfältigen Auswahl der Hardware-Komponenten

und der Optimierung der Software, um die Kosten zu minimieren, ohne dabei Kompromisse bei

der Leistungsfähigkeit und Zuverlässigkeit einzugehen.

Durch innovative Ansätze in der Softwareentwicklung und Hardwarekonfiguration ist es gelungen,

einen GPS-Tracker zu entwickeln, der sich durch geringe Herstellungskosten, einfache Bedienbar-

keit, hohe Zuverlässigkeit und Genauigkeit auszeichnet. Die Ergebnisse der durchgeführten Tests

bestätigen, dass der Tracker in der Lage ist, die Position mit einer beeindruckenden Genauigkeit

zu bestimmen und die Daten effizient und sicher an ein Endgerät zu übermitteln. Darüber

hinaus wurde im Rahmen des Projekts eine intuitive Benutzeroberfläche entwickelt, die es

den Nutzern ermöglicht, die aufgezeichneten Daten nicht nur zu visualisieren, sondern auch in

einem nutzerfreundlichen Format zu übertragen und zu speichern. Diese Funktionalität erweitert

deutlich den Nutzen des GPS-Trackers, indem sie eine einfache Analyse und Verwendung der

gesammelten Daten für verschiedene Zwecke ermöglicht.

Durch die Kombination aus niedrigen Produktionskosten, hoher Genauigkeit, Benutzerfreund-

lichkeit und der Fähigkeit, Daten effektiv zu visualisieren und zu speichern, bietet der entwickelte

GPS-Tracker eine attraktive Option für zahlreiche Anwendungsfälle. Dazu zählen unter anderem

die Logistik, das Flottenmanagement, persönliche Sicherheitsanwendungen, Outdoor-Aktivitäten

und wissenschaftliche Forschung. Die Ergebnisse dieser Arbeit legen nahe, dass der entwickelte

GPS-Tracker eine kostengünstige und dennoch leistungsstarke Alternative zu teureren kommer-

ziellen Produkten darstellt und neue Möglichkeiten für den Einsatz von GPS-Technologie in

verschiedenen Anwendungsbereichen eröffnet.



5 ZUSAMMENFASSUNG UND AUSBLICK 77

5.2 Ausblick auf zukünftige Entwicklungen und Anwendungen

Der GPS-Tracker basiert derzeit auf einem Entwicklungsboard und ist daher noch relativ groß

und sperrig. Eines der Hauptziele für die Zukunft ist die weitere Miniaturisierung des Geräts, um

es noch vielseitiger einsetzbar zu machen. Durch die Entwicklung eines eigenen PCBs und die

Integration der Komponenten in einem kompakten Gehäuse könnte das Gerät weiter optimiert

werden.

Ein weiterer wichtiger Forschungsschwerpunkt liegt in der Verbesserung der Energieeffizienz des

Geräts, um die Laufzeit des Akkus zu verlängern und den Einsatz in abgelegenen oder schwer

zugänglichen Gebieten zu erleichtern. Bei einige Anwendungen, die eine hohe Genauigkeit

nicht erfordern müssen, muss das GPS Modul nicht ständig 1 Hz arbeiten, sondern nur in

festgelegten Zeitintervallen (Z.B 5 Sekunden), um die Energie zu sparen und die Speichernutzung

zu optimieren.

Darüber hinaus wird an der Integration zusätzlicher Sensoren eine wichtige Rolle spielen.

Durch die Kombination des GPS-Trackers mit weiteren Sensoren wie Beschleunigungssensoren,

Temperatursensoren oder Feuchtigkeitssensoren könnten neue Anwendungsmöglichkeiten er-

schlossen werden. Dies würde den Anwendungsbereich des Trackers erheblich erweitern und

ihn für Aufgaben in der Umweltüberwachung, in der Logistik oder im Bereich der persönlichen

Sicherheit noch attraktiver machen.

Zusammenfassend lässt sich sagen, dass die Entwicklung dieses GPS-Trackers ein vielverspre-

chender erster Schritt in Richtung einer kostengünstigen und dennoch leistungsstarken Lösung

für die Positionsbestimmung ist. Die vorgestellte Lösung eröffnet neue Möglichkeiten für den

Einsatz von GPS-Technologie in verschiedenen Anwendungsbereichen und bietet eine solide

Grundlage für zukünftige Entwicklungen und Anwendungen.



LITERATURVERZEICHNIS 78

Literaturverzeichnis
[1] R.B. Gaikwad, K.R. Pawar, R.P. Gaikwad, S.B. Gaikwad, “Animal Health Monitoring

System Using GPS & GSM Modem,” S. 314–317, 2019.

[2] U. Brinkschulte und T. Ungerer, Mikrocontroller und Mikroprozessoren. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2010, isbn: 978-3-642-05397-9.

[3] G. Schmitt und A. Riedenauer, Hrsg., Mikrocontrollertechnik mit AVR. De Gruyter, 2019,

isbn: 9783110403886.

[4] Microchip Technology, “ATmega48/V/88/V/168/V Data Sheet,” 2018.

[5] SiSy Solutions, “Technische Beschreibung myAVR Board Version 2.20,” 2019.

[6] J. G. McNeff, “The global positioning system,” IEEE Transactions on Microwave Theory

and Techniques, Jg. 50, Nr. 3, S. 645–652, 2002.

[7] P. J. Teunissen und O. Montenbruck, Springer Handbook of Global Navigation Satellite

Systems. Cham: Springer International Publishing, 2017, isbn: 978-3-319-42926-7.

[8] C. Wolfseher. “Wie funktioniert ein Navi? | © C. Wolfseher.” (9.11.2021), Adresse: https:

//www.katharinengymnasium.de/wolf/web/gps/gps1Trilateration.html.

[9] Wikipedia, Hrsg. “GPS Exchange Format.” (2024), Adresse: https://de.wikipedia.

org/w/index.php?title=GPS_Exchange_Format&oldid=241884354.

[10] W. Gehrke, M. Winzker, K. Urbanski und R. Woitowitz, Digitaltechnik. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2016, isbn: 978-3-662-49730-2.

[11] CDtop Technology, “PA1616D datasheet,” 2024.

[12] AZ-Delivery, “HD44780 16x02 Blaues Display HD44780 16x02 Blaues Display mit

Serielle Schnittstelle Datenblatt,” 2024.

[13] Simeon Maxein, “Benutzen einer SD-Speicherkarte mit dem ATmega-Microcontroller,”

2008.

[14] SD Association | The SD Association, Hrsg. “SD Standard Overview | SD Associa-

tion.” (2023), Adresse: https://www.sdcard.org/developers/sd-standard-

overview/.

https://www.katharinengymnasium.de/wolf/web/gps/gps1Trilateration.html
https://www.katharinengymnasium.de/wolf/web/gps/gps1Trilateration.html
https://de.wikipedia.org/w/index.php?title=GPS_Exchange_Format&oldid=241884354
https://de.wikipedia.org/w/index.php?title=GPS_Exchange_Format&oldid=241884354
https://www.sdcard.org/developers/sd-standard-overview/
https://www.sdcard.org/developers/sd-standard-overview/


LITERATURVERZEICHNIS 79

[15] Wikipedia, Hrsg. “Keyhole Markup Language.” (2023), Adresse: https : / / de .

wikipedia.org/w/index.php?title=Keyhole_Markup_Language&oldid=

236173780.

https://de.wikipedia.org/w/index.php?title=Keyhole_Markup_Language&oldid=236173780
https://de.wikipedia.org/w/index.php?title=Keyhole_Markup_Language&oldid=236173780
https://de.wikipedia.org/w/index.php?title=Keyhole_Markup_Language&oldid=236173780


ANHANG 80

Anhang: Code-Listings der Mikrocontroller-

Firmware

1 #define F_CPU 3686400L // CPU-Frequenz

2 #endif

3 #define BAUD 9600L // Baudrate (GPS-Modul Standard)

4

5 #define BUTTON1_PIN PD2 // Taste 1-Pin

6 #define BUTTON2_PIN PD3 // Taste 2-Pin

7

8 #include <avr/io.h> // AVR-IO

9 #include <avr/interrupt.h> // AVR-Interrupt

10 #include <util/delay.h> // AVR-Delay

11 #include <stdint.h> // Standarddatentypen

12 #include <string.h> // String

13 #include <stdlib.h> // Standardbibliothek

14 #include <stdio.h> // Standard-Ein- und Ausgabe

15 #include <stdbool.h> // Boolesche Werte

16 #include <avr/eeprom.h> // AVR-EEPROM

17 #include "Uart.h" // UART

18 #include "lcd.h" // LCD

19 #include "spi.h" // SPI

20 #include "sdcard.h" // SD-Karte

21

22 volatile uint8_t Messung_modus = 0; // Flag für Messung Modus (0 = AUS, 1 =

AN)

23 volatile uint8_t Lesen_modus = 0; // Flag für Lesen Modus (0 = AUS, 1 = AN)

24 static bool gpsSignalLost; // GPS-Signalstatus

25

26 uint32_t EEMEM speicher_Addr; // Speicherort der Adresse im EEPROM (0

x00000000)

27 uint32_t SchreibenAddr = 0x00000000; // Addresse zu schreiben (0x00000000)

28 uint32_t LesenAddr = 0x00000000; // Addresse zu lesen (0x00000000)

29 uint32_t Gesamtbytes = 1977188352; // Gesamtgröße als KB der 2GB SD-Karte

(1977188352)

30 uint32_t Sektorbytes = 0x00000200; // 512kb pro Sektor (0x00000200)



ANHANG 81

31 uint8_t res[5], buf[50]; // Für SD-Karte schreiben

32 uint8_t res1[5], buf1[50]; // Für SD-Karte lesen

33 uint8_t token0, token1; // Für SD-Karte lesen und schreiben

34 char* token; // Für die GPS-Datensatz verarbeiten

35

36 void initializeSystem(void); // System initialisieren

37 void lesenSDCard(void); // SD-Karte lesen

38 void abholenGPSDaten(void); // GPS-Daten abholen

39 void verarbeitenGPSLine(char *line); // GPS-Daten verarbeiten

40

41 void setBaudRate(unsigned long baud) {

42 uart_init(UART_BAUD_SELECT(baud, F_CPU));

43 }

44

45 void EEPROM_speicherAddress(uint32_t Addr) { // Adresse im EEPROM speichern

46 eeprom_busy_wait(); // Warten, dass EEPROM nicht besetzt ist

47 eeprom_update_block((const void*)&Addr, &speicher_Addr , sizeof(Addr));

// Adresse im EEPROM speichern

48 }

49

50 uint32_t EEPROM_lesenAddress(void) { // Adresse im EEPROM lesen

51 uint32_t Addr; // Adresse

52 eeprom_busy_wait(); // Warten, dass EEPROM nicht besetzt ist

53 eeprom_read_block((void*)&Addr, &speicher_Addr , sizeof(Addr)); //

Adresse im EEPROM lesen

54 return Addr; // Adresse zurückgeben

55 }

56

57 // Behandlung von Tastenunterbrechungen mit der ISR (Interrupt Service

Routine)

58 ISR(INT0_vect) // INT0

59 {

60 _delay_ms(20); // Entprellung (20ms)

61 if (!(PIND & (1 << BUTTON1_PIN))) { // Prüfen, ob BUTTON1_PIN gedrückt

ist (0 = gedrückt, 1 = nicht gedrückt)

62 if (Lesen_modus) { // Wenn im Lesemodus

63 return; // Zurück

64 }

65 if (PIND & (1 << BUTTON2_PIN)) { // Prüfen, ob BUTTON2_PIN NICHT



ANHANG 82

gedrückt ist (0 = nicht gedrückt, 1 = gedrückt)

66 Messung_modus = !Messung_modus; // Messung Modus umschalten (0

= AUS, 1 = AN)

67 //uart_puts("Messung: "); // Ausgabe auf UART

68 //uart_puts(Messung_modus ? "AN" : "AUS"); // Ausgabe auf UART

69 //uart_puts("\r\n"); // Ausgabe auf UART

70 } else { // Wenn BUTTON2_PIN auch gedrückt ist (0 = gedrückt, 1

= nicht gedrückt)

71 EEPROM_speicherAddress(0x00000000); // Setzen der zuletzt

gespeicherten Adresse auf 0x00000000 während der manuellen

Initialisierung

72 initializeSystem(); // System neu initialisieren

73 }

74 }

75 }

76

77 ISR(INT1_vect)

78 {

79 _delay_ms(20); // Entprellung (20ms)

80 if (!(PIND & (1 << BUTTON2_PIN))) { // Prüfen, ob BUTTON2_PIN gedrückt

ist (0 = gedrückt, 1 = nicht gedrückt)

81 if (Messung_modus) { // Wenn im Messmodus

82 return; // Zurück

83 }

84 if (Lesen_modus) { // Wenn im Lesemodus , verhindere

Reinitialisierung

85 return; // Zurück

86 }

87 if (PIND & (1 << BUTTON1_PIN)) { // Prüfen, ob BUTTON1_PIN NICHT

gedrückt ist (0 = nicht gedrückt, 1 = gedrückt)

88 initializeSystem(); // System neu initialisieren

89 Lesen_modus = !Lesen_modus; // Lesen Modus umschalten (0 = AUS,

1 = AN)

90 //uart_puts("Lesen: "); // Ausgabe auf UART

91 //uart_puts(Lesen_modus ? "AN" : "AUS"); // Ausgabe auf UART

92 //uart_puts("\r\n"); // Ausgabe auf UART

93 Messung_modus = 0; // Wenn im Lesemodus , deaktivieren des

Messmodus (0 = AUS, 1 = AN)

94 } else { // Wenn BUTTON1_PIN auch gedrückt ist (0 = gedrückt, 1



ANHANG 83

= nicht gedrückt)

95 EEPROM_speicherAddress(0x00000000); // Setzen der zuletzt

gespeicherten Adresse auf 0x00000000 während der manuellen

Initialisierung

96 initializeSystem(); // System neu initialisieren

97 }

98 }

99 }

100

101 int main(void)

102 {

103 // Initialisierung des Systems

104 initializeSystem();

105

106 while(1) // Endlosschleife

107 {

108 if (Lesen_modus) // Lesen Modus (0 = AUS, 1 = AN)

109 {

110 lesenSDCard(); // SD-Karte lesen

111 }

112

113 if (Messung_modus) // Messung Modus (0 = AUS, 1 = AN)

114 {

115 abholenGPSDaten(); // GPS-Daten abholen

116 }

117 }

118 return 0; // Zurück

119 }

120

121 void initializeSystem(void) // System initialisieren

122 {

123 // UART initialisieren

124 uart_init(UART_BAUD_SELECT(BAUD, F_CPU));

125

126 // LCD initialisieren

127 lcd_init();

128

129 // SPI initialisieren

130 SPI_init(SPI_MASTER | SPI_FOSC_16 | SPI_MODE_0);



ANHANG 84

131

132 // Letzte Adresse aus EEPROM lesen

133 SchreibenAddr = EEPROM_lesenAddress();

134

135 // SD-Karte initialisieren

136 if(SD_init() != SD_SUCCESS) // Wenn SD-Karte nicht initialisiert werden

kann

137 {

138 uart_puts("Fehler bei der Initialisierung der SD-Karte!\r\n"); //

Ausgabe auf UART

139 lcd_print_str("Keine SD-Karte!"); // Ausgabe auf LCD

140 }

141 else

142 {

143 if (SchreibenAddr == 0) // Wenn SchreibenAddr gleich 0 ist

144 {

145 _delay_ms(100); // Kurze Verzögerung

146 lcd_print_str("Messung starten durch Taste 1"); // Ausgabe auf

LCD

147 }

148 else // Wenn SchreibenAddr nicht gleich 0 ist

149 {

150 _delay_ms(100); // Kurze Verzögerung

151 lcd_print_str("Weiter messen durch Taste 1"); // Ausgabe auf

LCD

152 }

153 }

154

155 // Taste 1-Pin als Eingang setzen und den internen Pull-Up-Widerstand

aktivieren

156 DDRD &= ~(1 << BUTTON1_PIN); // Setze als Eingang

157 PORTD |= (1 << BUTTON1_PIN); // Aktiviere internen Pull-Up-Widerstand

158

159 // Taste 2-Pin als Eingang setzen und den internen Pull-Up-Widerstand

aktivieren

160 DDRD &= ~(1 << BUTTON2_PIN); // Setze als Eingang

161 PORTD |= (1 << BUTTON2_PIN); // Aktiviere internen Pull-Up-Widerstand

162

163 // INT0 einstellen , um die fallende Flanke von Taste 1 zu erkennen



ANHANG 85

164 EICRA |= (1 << ISC01);

165 EICRA &= ~(1 << ISC00); // INT0

166

167 // INT1 einstellen , um die fallende Flanke von Taste 2 zu erkennen

168 EICRA |= (1 << ISC11);

169 EICRA &= ~(1 << ISC10); // INT1

170

171 // Externen Interrupt 0 und externen Interrupt 1 zulassen

172 EIMSK |= (1 << INT0) | (1 << INT1); // INT0 und INT1

173

174 // Interrupts aktivieren

175 sei();

176 }

177

178 void lesenSDCard(void) // SD-Karte lesen

179 {

180 lcd_clear(); // LCD löschen

181 lcd_print_str("Lesen..."); // Ausgabe auf LCD

182 setBaudRate(115200L); // Baudrate setzen (Daten schneller übertragen)

183 if (LesenAddr < SchreibenAddr) // Wenn die Adresse zum Lesen kleiner

als die Adresse zum Schreiben ist

184 {

185 res1[0] = SD_readSingleBlock(LesenAddr , buf1, &token1); // SD-Karte

lesen

186 if (res1[0] == 0x00) // Wenn SD-Karte erfolgreich gelesen werden

kann

187 {

188 if (token1 == SD_START_TOKEN) // Wenn Token1 gleich dem Start-

Token ist

189 {

190 for (uint8_t i = 0; i < 50; i++) // Für 50 Zeichen

191 {

192 if (buf1[i] != 0) // Wenn das Zeichen nicht gleich 0

ist

193 {

194 uart_putc(buf1[i]); // Ausgabe auf UART

195 }

196 else

197 {



ANHANG 86

198 break; // Zurück

199 }

200 }

201 }

202 else

203 {

204 uart_puts("Fehler!\r\n"); // Ausgabe auf UART

205 }

206 }

207 else

208 {

209 uart_puts("Fehler!\r\n"); // Ausgabe auf UART

210 }

211 LesenAddr += Sektorbytes * 1; // Jede 1 Sektor einmal lesen (512kb)

212 }

213 else

214 {

215 Lesen_modus = 0; // Lesen Modus deaktivieren (0 = AUS, 1 = AN)

216 LesenAddr = 0x00000000; // Lesen Adresse auf 0x00000000 setzen

217 uart_puts("Lesen: "); // Ausgabe auf UART

218 uart_puts(Lesen_modus ? "AN" : "AUS"); // Ausgabe auf UART

219 uart_puts("\r\n"); // Ausgabe auf UART

220 lcd_clear(); // LCD löschen

221 _delay_ms(100); // Kurze Verzögerung

222 lcd_print_str("Lesen erfolgreich!"); // Ausgabe auf LCD

223 setBaudRate(9600L); // Baudrate setzen (GPS-Modul Standard)

224 }

225 }

226

227 void abholenGPSDaten(void) // GPS-Daten abholen

228 {

229 static char line[50]; // Zeile

230 static uint8_t line_index = 0; // Zeilenindex

231 static uint8_t gngga_index = 0; // GNGGA-Index

232

233 if(uart_available() > 0) // Sobald die GPS-Daten verfügbar sind (0 =

nicht verfügbar, 1 = verfügbar)

234 {

235 for(uint8_t i = 0; i < uart_available(); i++) // Für die Anzahl der



ANHANG 87

verfügbaren GPS-Daten

236 {

237 char c = uart_getc(); // GPS-Daten abholen

238

239 if (gngga_index == 0 && c == ’$’)

240 {

241 gngga_index++;

242 }

243 else if (gngga_index == 1 && c == ’G’)

244 {

245 gngga_index++;

246 }

247 else if (gngga_index == 2 && c == ’N’)

248 {

249 gngga_index++;

250 }

251 else if (gngga_index == 3 && c == ’G’)

252 {

253 gngga_index++;

254 }

255 else if (gngga_index == 4 && c == ’G’)

256 {

257 gngga_index++;

258 }

259 else if (gngga_index == 5 && c == ’A’)

260 {

261 gngga_index++;

262 }

263 else if (gngga_index == 6 && c == ’,’)

264 {

265 gngga_index++;

266 }

267 else if (gngga_index >= 7) // Ohne "$GNGGA,", vom 7. Zeichen

an zu zählen

268 {

269 if (line_index < sizeof(line) - 1) // Wenn der Zeilenindex

kleiner als die Zeilengröße - 1 ist

270 {

271 line[line_index] = c; // Zeile setzen



ANHANG 88

272 line_index++; // Zeilenindex erhöhen

273 }

274 }

275 else

276 {

277 gngga_index = 0;

278 }

279

280 if (line_index == 37) // Bis das Zeichen Fix -> Z.B

(165006.000,2241.9107,N,12017.2383,E,1)

281 {

282 line[line_index] = ’\0’; // Zeile setzen

283 verarbeitenGPSLine(line); // GPS-Daten verarbeiten

284 line_index = 0; // Zeilenindex zurücksetzen

285 gngga_index = 0; // GNGGA-Index zurücksetzen

286 }

287

288 // Überprüfen, ob GPS-Signal verloren gegangen ist

289 if (gpsSignalLost) {

290 lcd_clear(); // LCD löschen

291 lcd_print_str("Kein GPS-Signal!"); // Ausgabe auf LCD

292 gpsSignalLost = false; // Setze den GPS-Signalstatus zurück

293 }

294 }

295 }

296 }

297

298 void verarbeitenGPSLine(char* line) // GPS-Daten verarbeiten

299 {

300 float latitude = 0.0, longitude = 0.0; // Breitengrad und Längengrad

301 char NS, EW; // Norden und Osten

302

303 token = strtok(line, ","); // Zeile aufteilen

304 uint8_t hour = (token[0] - ’0’) * 10 + (token[1] - ’0’); // Zeitzone

UTC

305 uint8_t min = (token[2] - ’0’) * 10 + (token[3] - ’0’);

306 uint8_t sec = (token[4] - ’0’) * 10 + (token[5] - ’0’);

307 char time_data[16]; // Zeit

308



ANHANG 89

309 // Zeit setzen (Zeit: 10:07:53)

310 strcpy(time_data , "Zeit: ");

311 itoa(hour, buf, 10);

312 if (hour < 10) strcat(time_data , "0"); // Wenn die Stunde kleiner als

10 ist, dann 0 hinzufügen

313 strcat(time_data , buf);

314 strcat(time_data , ":");

315 itoa(min, buf, 10);

316 if (min < 10) strcat(time_data , "0"); // Wenn die Minute kleiner als 10

ist, dann 0 hinzufügen

317 strcat(time_data , buf);

318 strcat(time_data , ":");

319 itoa(sec, buf, 10);

320 if (sec < 10) strcat(time_data , "0"); // Wenn die Sekunde kleiner als

10 ist, dann 0 hinzufügen

321 strcat(time_data , buf);

322

323 token = strtok(NULL, ","); // Zeile aufteilen

324 int degree = atoi(token) / 100; // Grad

325 float minute = atof(token) - degree * 100; // Minute

326 latitude = degree + minute / 60.0; // Breitengrad

327

328 token = strtok(NULL, ","); // Zeile aufteilen

329 NS = token[0]; // Norden oder Süden

330

331 token = strtok(NULL, ","); // Zeile aufteilen

332 degree = atoi(token) / 100; // Grad

333 minute = atof(token) - degree * 100; // Minute

334 longitude = degree + minute / 60.0; // Längengrad

335

336 token = strtok(NULL, ","); // Zeile aufteilen

337 EW = token[0]; // Osten oder Westen

338

339 token = strtok(NULL, ","); // Zeile aufteilen

340 int fix = atoi(token); // Fix (0 = kein Fix, 1 = Fix)

341

342 // Falls der Fix 0 ist, bedeutet dies, dass es keine gültigen GPS-Daten

gibt (0 = kein Fix, 1 = Fix)

343 if (fix == 0) {



ANHANG 90

344 gpsSignalLost = true; // GPS-Signalstatus auf verloren setzen

345 return; // Zurück

346 }

347

348 // GPS-Signalstatus auf gefunden setzen, da gültige Daten vorhanden

sind

349 gpsSignalLost = false;

350

351 char lat_data[16], lon_data[16]; // Breitengrad und Längengrad

352 int lat_int = (int)latitude; // Breitengrad

353 int lat_frac = (int)((latitude - lat_int) * 10000); // Längengrad

354

355 // Breitengrad setzen (Lat: 51.7141 N)

356 strcpy(lat_data, "Lat: ");

357 itoa(lat_int, buf, 10);

358 strcat(lat_data, buf);

359 strcat(lat_data, ".");

360 itoa(lat_frac , buf, 10);

361 if (lat_frac < 1000) strcat(lat_data , "0");

362 if (lat_frac < 100) strcat(lat_data , "0");

363 if (lat_frac < 10) strcat(lat_data , "0");

364 strcat(lat_data, buf);

365 strcat(lat_data, " ");

366 strncat(lat_data , &NS, 1);

367

368 int lon_int = (int)longitude; // Längengrad

369 int lon_frac = (int)((longitude - lon_int) * 10000); // Längengrad

370

371 // Längengrad setzen (Lon: 8.3302 E)

372 strcpy(lon_data, "Lon: ");

373 itoa(lon_int, buf, 10);

374 strcat(lon_data, buf);

375 strcat(lon_data, ".");

376 itoa(lon_frac , buf, 10);

377 if (lon_frac < 1000) strcat(lon_data , "0");

378 if (lon_frac < 100) strcat(lon_data , "0");

379 if (lon_frac < 10) strcat(lon_data , "0");

380 strcat(lon_data, buf);

381 strcat(lon_data, " ");



ANHANG 91

382 strncat(lon_data , &EW, 1);

383

384 lcd_clear(); // LCD löschen

385 _delay_ms(100); // Kurze Verzögerung

386 lcd_print_str(lat_data); // Ausgabe auf LCD

387 lcd_setcursor(0,1);

388 lcd_print_str(" ");

389 lcd_print_str(lon_data); // Ausgabe auf LCD

390

391 // Die Daten in den Puffer schreiben

392 memset(buf, 0, sizeof(buf)); // Den Puffer mit Nullen initialisieren

393

394 // -> Z.B (Zeit: 10:07:53, Lat: 51.7141 N, Lon: 8.3302 E)

395 strcpy((char *)buf, time_data); // Zeit setzen

396 strcat((char *)buf, ", ");

397 strcat((char *)buf, lat_data); // Breitengrad setzen

398 strcat((char *)buf, ", ");

399 strcat((char *)buf, lon_data); // Längengrad setzen

400 strcat((char *)buf, "\r\n");

401

402 // Daten in den Sektor schreiben (512kb)

403 res[0] = SD_writeSingleBlock(SchreibenAddr , buf, &token0); // SD-Karte

schreiben

404

405 // Aktualisieren der Adresse für das nächste Schreiben

406 SchreibenAddr += Sektorbytes; // Jede 1 Sektor einmal schreiben (512kb)

407

408 if(SchreibenAddr >= Gesamtbytes) { // Wenn die Adresse zum Schreiben gr

ößer als die Gesamtgröße ist

409 SchreibenAddr = 0x00000000; // Schreiben Adresse auf 0x00000000

setzen

410 }

411

412 // Adresse im EEPROM aktualisieren

413 EEPROM_speicherAddress(SchreibenAddr); // Adresse im EEPROM

speichern

414 }

Listing 5.1: vollständiger Quellcode des Mikrocontroller-Programms



ANHANG 92

Anhang: Code-Listings der PC-Anwendung

1 #include <iostream> // Für Ein- und Ausgabe

2 #include <fstream> // Für Dateioperationen

3 #include <string> // Für std::string

4 #include <windows.h> // Für COM-Port

5 #include <ctime> // Für aktuelles Datum und Uhrzeit

6 #include <Shlobj.h> // Für SHGetFolderPath (Benutzerdokumente -Ordner

abrufen)

7

8 // Daten von COM lesen

9 bool COMDatenLesen(HANDLE hCom, std::string& daten) {

10 char puffer[64]; // Puffer für die empfangenen Daten (64 Bytes)

11 DWORD geleseneBytes; // Anzahl der gelesenen Bytes

12 if (ReadFile(hCom, puffer, sizeof(puffer) - 1, &geleseneBytes , nullptr)

&& geleseneBytes > 0) { // Lesen Sie die Daten vom COM-Port

13 puffer[geleseneBytes] = ’\0’; // Nullterminator hinzufügen

14 daten = puffer; // Daten in den String schreiben

15 return true; // Erfolg

16 }

17 return false; // Misserfolg

18 }

19

20 // Aktuelles Datum abrufen

21 std::string aktuellesDatumHolen() { // Aktuelles Datum abrufen

22 time_t jetzt = time(nullptr); // Aktuelle Zeit abrufen

23 struct tm zeitstruktur; // Zeitstruktur erstellen

24 char datumPuffer[80]; // Puffer für das Datum (80 Bytes)

25 localtime_s(&zeitstruktur , &jetzt); // Zeit in die Zeitstruktur

konvertieren

26 strftime(datumPuffer , sizeof(datumPuffer), "%Y-%m-%d", &zeitstruktur);

// Format: JJJJ-MM-TT

27 return datumPuffer; // Datum zurückgeben

28 }

29

30 // Aktuelles Datum und Uhrzeit abrufen für den Dateinamen

31 std::string aktuellesDatumUndUhrzeitHolen() { // Aktuelles Datum und

Uhrzeit abrufen



ANHANG 93

32 time_t jetzt = time(nullptr); // Aktuelle Zeit abrufen

33 struct tm zeitstruktur; // Zeitstruktur erstellen

34 char datumPuffer[80]; // Puffer für das Datum (80 Bytes)

35 localtime_s(&zeitstruktur , &jetzt); // Zeit in die Zeitstruktur

konvertieren

36 strftime(datumPuffer , sizeof(datumPuffer), "%Y%m%d_%H%M%S", &

zeitstruktur); // Format: JJJJMMTT_HHMMSS

37 return datumPuffer; // Datum und Uhrzeit zurückgeben

38 }

39

40 // Extrahieren und Konvertieren von Breiten- und Längengraden

41 std::string BreitenLängengradKonvertieren(const std::string& rohwert, char

richtung) { // Extrahieren und Konvertieren von Breiten- und Lä

ngengraden

42 std::string dezimalwert = rohwert.substr(0, rohwert.find(’ ’)); //

Extrahieren Sie den Dezimalwert aus dem Rohwert

43 if (richtung == ’S’ || richtung == ’W’) { // Wenn die Richtung Süden

oder Westen ist, ist der Dezimalwert negativ

44 dezimalwert = "-" + dezimalwert; // Dezimalwert negativ

45 }

46 return dezimalwert; // Dezimalwert zurückgeben

47 }

48

49 int main() {

50 setlocale(LC_ALL, ""); // Locale setzen, um Umlaute zu unterstützen (ä,

ö, ü, ß)

51

52 // COM-Port vom Benutzer erfragen (Beispiel: 5)

53 int comNummer; // COM-Port-Nummer

54 std::cout << "Bitte geben Sie die Nummer des gewünschten COM-Ports ein:

"; // Aufforderung zur Eingabe der COM-Port-Nummer

55 std::cin >> comNummer; // COM-Port-Nummer vom Benutzer eingeben

56

57 std::string comName = "COM" + std::to_string(comNummer) + ":"; // COM-

Port-Name (Beispiel: COM5:)

58

59 HANDLE hCom; // COM-Port-Handle

60 DCB dcbStruktur; // DCB-Struktur

61 BOOL erfolg; // Erfolg



ANHANG 94

62

63 hCom = CreateFileA(comName.c_str(), GENERIC_READ | GENERIC_WRITE , 0,

nullptr, OPEN_EXISTING , 0, nullptr); // Öffnen Sie den COM-Port

64 if (hCom == INVALID_HANDLE_VALUE) { // Wenn der COM-Port nicht geöffnet

werden kann, wird eine Fehlermeldung ausgegeben

65 std::cerr << "Fehler beim Öffnen von " << comName << std::endl; //

Fehlermeldung

66 return 1; // Beendet das Programm, wenn der COM-Port nicht geöffnet

werden kann

67 }

68

69 std::wcout << L"Erfolgreich verbunden mit " << comName.c_str() << std::

endl; // Erfolgsmeldung

70 std::wcout << L"Bitte drücken Sie die Taste 2, um die GPX-Datei zu

speichern!" << std::endl; // Aufforderung zum Speichern der GPX-Datei

71

72 erfolg = GetCommState(hCom, &dcbStruktur); // COM-Port-Status abrufen

73 if (!erfolg) { // Wenn der COM-Port-Status nicht abgerufen werden kann,

wird eine Fehlermeldung ausgegeben

74 std::cerr << "GetCommState fehlgeschlagen" << std::endl; //

Fehlermeldung

75 CloseHandle(hCom); // COM-Port schließen

76 return 1; // Beendet das Programm, wenn der COM-Port-Status nicht

abgerufen werden kann

77 }

78

79 dcbStruktur.BaudRate = CBR_115200; // Baudrate

80 dcbStruktur.ByteSize = 8; // Bytegröße

81 dcbStruktur.StopBits = ONESTOPBIT; // Stopbit

82 dcbStruktur.Parity = NOPARITY; // Parität

83

84 erfolg = SetCommState(hCom, &dcbStruktur); // COM-Port-Status setzen

85 if (!erfolg) { // Wenn der COM-Port-Status nicht gesetzt werden kann,

wird eine Fehlermeldung ausgegeben

86 std::cerr << "SetCommState fehlgeschlagen" << std::endl; //

Fehlermeldung

87 CloseHandle(hCom); // COM-Port schließen

88 return 1; // Beendet das Programm, wenn der COM-Port-Status nicht

gesetzt werden kann



ANHANG 95

89 }

90

91 // Benutzerdokumente -Ordner abrufen

92 char dokumentePfad[MAX_PATH]; // Puffer für den Dokumentenpfad (

MAX_PATH Bytes)

93 HRESULT result = SHGetFolderPathA(NULL, CSIDL_PERSONAL , NULL,

SHGFP_TYPE_CURRENT , dokumentePfad); // Benutzerdokumente -Ordner abrufen

94

95 if (!SUCCEEDED(result)) { // Wenn der Dokumentenpfad nicht abgerufen

werden kann, wird eine Fehlermeldung ausgegeben

96 std::cerr << "Fehler beim Abrufen des Dokumentenpfads" << std::endl

; // Fehlermeldung

97 return 1; // Beendet das Programm, wenn der Dokumentenpfad nicht

abgerufen werden kann

98 }

99

100 std::string gxpOrdnerPfad = std::string(dokumentePfad) + "\\GXP_Datei";

// GXP_Datei -Ordnerpfad

101

102 // Überprüfen, ob der Ordner existiert , und ggf. erstellen

103 DWORD ftyp = GetFileAttributesA(gxpOrdnerPfad.c_str()); //

Dateiattribut abrufen

104 if (ftyp == INVALID_FILE_ATTRIBUTES) { // Wenn das Dateiattribut nicht

abgerufen werden kann, wird eine Fehlermeldung ausgegeben

105 if (!CreateDirectoryA(gxpOrdnerPfad.c_str(), NULL)) { // Wenn der

Ordner nicht erstellt werden kann, wird eine Fehlermeldung ausgegeben

106 std::cerr << "Fehler beim Erstellen des Ordners GXP_Datei" <<

std::endl; // Fehlermeldung

107 return 1; // Beendet das Programm , wenn der Ordner nicht

erstellt werden kann

108 }

109 }

110 else if (!(ftyp & FILE_ATTRIBUTE_DIRECTORY)) { // Wenn das

Dateiattribut nicht abgerufen werden kann, wird eine Fehlermeldung

ausgegeben

111 std::cerr << "GXP_Datei ist kein Ordner" << std::endl; //

Fehlermeldung

112 return 1; // Beendet das Programm, wenn GXP_Datei existiert , aber

kein Ordner ist



ANHANG 96

113 }

114

115 // Erzeugen Sie einen Dateinamen basierend auf dem aktuellen Datum und

der Uhrzeit

116 std::string datumUndUhrzeit = aktuellesDatumUndUhrzeitHolen(); //

Aktuelles Datum und Uhrzeit abrufen

117 std::string dateiName = gxpOrdnerPfad + "\\Output_" + datumUndUhrzeit +

".gpx"; // Dateiname

118

119 std::ofstream gpxDatei(dateiName , std::ios::out); // GPX-Datei öffnen

120 if (!gpxDatei.is_open()) { // Wenn die GPX-Datei nicht geöffnet werden

kann, wird eine Fehlermeldung ausgegeben

121 std::cerr << "Datei konnte nicht zum Schreiben geöffnet werden" <<

std::endl; // Fehlermeldung

122 CloseHandle(hCom); // COM-Port schließen

123 return 1; // Beendet das Programm, wenn die GPX-Datei nicht geö

ffnet werden kann

124 }

125

126 // Beginn der GPX-Datei schreiben

127 gpxDatei << "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n"; // XML-

Deklaration

128 gpxDatei << "<gpx xmlns:xsi=\"http://www.w3.org/2001/XMLSchema -instance

\" xmlns=\"http://www.topografix.com/GPX/1/1\" xsi:schemaLocation=\"http

://www.topografix.com/GPX/1/1 http://www.topografix.com/GPX/1/1/gpx.xsd

\" version=\"1.1\" creator=\"https://gpx.studio\">\n"; // GPX-Datei-

Header

129 gpxDatei << " <trk>\n"; // Track-Element

130 gpxDatei << " <trkseg >\n"; // Tracksegment -Element

131

132 std::string aktuellesDatum = aktuellesDatumHolen(); // Aktuelles Datum

abrufen

133 std::string daten; // Daten

134 std::string angesammelteDaten; // Angesammelte Daten

135

136 while (true) { // Endlosschleife

137 if (COMDatenLesen(hCom, daten)) { // Daten vom COM-Port lesen

138 angesammelteDaten += daten; // Daten anhängen

139



ANHANG 97

140 size_t endeDerNachricht; // Ende der Nachricht

141 while ((endeDerNachricht = angesammelteDaten.find("\r\n")) !=

std::string::npos) { // Wenn das Ende der Nachricht gefunden wird

142 std::string nachricht = angesammelteDaten.substr(0,

endeDerNachricht); // Nachricht extrahieren

143 angesammelteDaten.erase(0, endeDerNachricht + 2); //

Nachricht löschen

144

145 // Datenanzeige im Terminal

146 std::cout << "Empfangene Daten: " << nachricht << std::endl

; // Empfangene Daten im Terminal anzeigen

147

148 if (nachricht == "Lesen: AUS") { // Wenn die Nachricht "

Lesen: AUS" ist, wird die Endlosschleife beendet

149 goto abschluss; // Sprung zum Dateiende

150 }

151

152 // Die Positionen der relevanten Datenpunkte bestimmen

153 size_t zeitPos = nachricht.find("Zeit: "); // Position der

Zeit

154 size_t breitePos = nachricht.find("Lat: "); // Position der

Breite

155 size_t laengePos = nachricht.find("Lon: "); // Position der

Länge

156

157 if (zeitPos != std::string::npos && breitePos != std::

string::npos && laengePos != std::string::npos) { // Wenn die Positionen

der relevanten Datenpunkte gefunden werden

158 std::string zeit = aktuellesDatum + "T" + nachricht.

substr(zeitPos + 6, 8) + "Z"; // Zeit extrahieren

159

160 size_t breiteEndePos = nachricht.find(’ ’, breitePos +

5); // Position des Leerzeichens nach der Breite

161 if (breiteEndePos == std::string::npos || breiteEndePos

> laengePos) { // Wenn das Leerzeichen nicht gefunden wird oder die

Position größer als die Länge ist

162 breiteEndePos = laengePos; // Position der Länge

163 }

164 std::string rohBreite = nachricht.substr(breitePos + 5,



ANHANG 98

breiteEndePos - breitePos - 5); // Rohwert der Breite extrahieren

165 char breitenrichtung = rohBreite.back(); // Richtung

der Breite extrahieren

166 std::string breite = BreitenLängengradKonvertieren(

rohBreite , breitenrichtung); // Breite konvertieren

167

168 size_t laengeEndePos = nachricht.find(’ ’, laengePos +

5); // Position des Leerzeichens nach der Länge

169 if (laengeEndePos == std::string::npos) { // Wenn das

Leerzeichen nicht gefunden wird

170 laengeEndePos = nachricht.length(); // Länge des

Strings

171 }

172 std::string rohLaenge = nachricht.substr(laengePos + 5,

laengeEndePos - laengePos - 5); // Rohwert der Länge extrahieren

173 char laengerichtung = rohLaenge.back(); // Richtung der

Länge extrahieren

174 std::string laenge = BreitenLängengradKonvertieren(

rohLaenge , laengerichtung); // Länge konvertieren

175

176 gpxDatei << " <trkpt lat=\"" << breite << "

\" lon=\"" << laenge << "\">\n"; // Trackpunkt -Element

177 gpxDatei << " <time>" << zeit << "</time

>\n"; // Zeit-Element

178 gpxDatei << " </trkpt >\n"; // Trackpunkt -

Element

179 }

180 }

181 }

182 Sleep(100); // 100 Millisekunden warten

183 }

184

185 abschluss:

186 // Abschluss der GPX-Datei schreiben

187 gpxDatei << " </trkseg >\n"; // Tracksegment -Element

188 gpxDatei << " </trk>\n"; // Track-Element

189 gpxDatei << "</gpx>"; // GPX-Datei-Ende

190 gpxDatei.close(); // GPX-Datei schließen

191 CloseHandle(hCom); // COM-Port schließen



ANHANG 99

192

193 std::cout << "Die Daten wurden in " << dateiName << " gespeichert." <<

std::endl; // Erfolgsmeldung

194 system("pause"); // Programm anhalten

195

196 return 0; // Programm beenden

197 }

Listing 5.2: vollständiger Quellcode der PC-Anwendung



EIDESSTATTLICHE ERKLÄRUNG 100

Eidesstattliche Erklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit selbstständig und nur unter Benutzung

der angegebenen Literatur und Hilfsmittel angefertigt habe. Wörtlich übernommene Sätze und

Satzteile sind als Zitate belegt, andere Anlehnungen hinsichtlich Aussage und Umfang unter

Quellenangabe kenntlich gemacht. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner

Prüfungsbehörde vorgelegen und ist auch noch nicht veröffentlicht.

Lippstadt, den 29.02.2024

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Unterschrift des Verfassers)

Mobile User


	Kurzzusammenfassung
	Abbildungsverzeichnis
	Tabellenverzeichnis
	Listings
	Abkrüzungsverzeichnis
	Einführung
	Hintergrund und Relevanz
	Zielsetzung
	Vorgehensweise

	Grundlagen und Designentwurf
	Mikrocontroller
	Grundlegende Begriffe von Mikrocontrollern
	Auswahl des Mikrocontrollers
	Auswahl des Entwicklungsboards
	Auswahl der Programmiersprache und der Entwicklungsumgebung (IDE)

	GPS Modul
	Grundlegende Begriffe des Global Positioning Systems
	Berechnung und Umwandlung der GPS-Koordinaten
	Auswahl der seriellen Schnittstellen (UART)
	Auswahl des GPS Moduls

	Display mit I2C Schnittstelle Modul
	Auswahl der seriellen Schnittstellen (I2C / TWI)
	Auswahl des Displays mit I2C Schnittstelle

	SD-Karte Modul
	Auswahl der seriellen Schnittstellen (SPI)
	Grundlegende Begriffe von SD-Karte


	Umsetzung und Softwareentwicklung
	Bauteilverbindung
	Entwicklung der Mikrocontroller-Firmware
	Beschreibung von initializeSystem()
	Beschreibung von lesenSDCard()
	Beschreibung von abholenGPSDaten()
	Beschreibung von verarbeitenGPSLine()
	Beschreibung von EEPROM_speicherAddress()
	Beschreibung von EEPROM_lesenAddress()
	Beschreibung von ISR(INT0_vect)
	Beschreibung von ISR(INT1_vect)

	Entwicklung der PC-Anwendung
	Beschreibung von COMDatenLesen()
	Beschreibung von aktuellesDatumHolen()
	Beschreibung von aktuellesDatumUndUhrzeitHolen()
	Beschreibung von BreitenLängengradKonvertieren()
	Erstellung von GPX-Datei
	Beschreibung von abschluss


	Test und Ergebnisse
	Funktionstests
	Vorgehensweise von Funktionstest
	Ergebnisse von Funktionstest

	Demonstrationsbeispiel
	Testverfahren und Validierung der Funktionalitäten
	Testverfahren und Validierung der Zuverlässigkeit
	Testverfahren und Validierung in höhe Geschwindigkeit

	Ergebnisse der Test- und Validierungsphase

	Zusammenfassung und Ausblick
	Zusammenfassung der Arbeitsergebnisse
	Ausblick auf zukünftige Entwicklungen und Anwendungen

	Literaturverzeichnis
	Anhang: Code-Listings der Mikrocontroller-Firmware
	Anhang: Code-Listings der PC-Anwendung
	Eidesstattliche Erklärung

