HOCHSCHULE
HAMM-LIPPSTADT

Bachelorarbeit

im Studiengang Mechatronik

Entwicklung eines GPS-Trackers unter Einsatz

eines Low-Cost Mikroconrollers

von Changlai Bao

Matr.-Nr.: 6220001

vorgelegt am 29.02.2024

an der Hochschule Hamm-Lippstadt

Erstprifer: Prof. Dr. Axel Thiimmler

Zweitprufer: Prof. Dr. J6rg Wenz

KURZZUSAMMENFASSUNG I

Kurzzusammenfassung

Im Zuge der rasanten technologischen Entwicklung der letzten Jahrzehnte hat sich der Einsatz von
GPS-Technologie in unserem Alltag fest etabliert. Von der Navigation in unbekannten Gebieten
bis hin zur Uberwachung wertvoller Giiter bietet die GPS-Technologie eine unverzichtbare
Grundlage fiir eine Vielzahl moderner Anwendungen. Allerdings sind kommerzielle GPS-Tracker

oft teuer und bieten nicht immer die gewiinschten Funktionen.

Diese Arbeit beschiftigt sich mit der Entwicklung eines kostengiinstigen GPS-Trackers auf
Basis eines Low-Cost Mikrocontrollers. Die Forschung und Entwicklung, die in dieser Arbeit
vorgestellt wird, basieren auf einer umfassenden Analyse vorhandener Technologien und Methoden
sowie auf experimentellen Ansitzen zur Realisierung eines Prototyps. Dabei wurde besonderes
Augenmerk auf die Auswahl geeigneter Hardwarekomponenten, die Optimierung der Software

zur Datenverarbeitung und die Integration der verschiedenen Komponenten gelegt.

Die Ergebnisse zeigen, dass der entwickelte GPS-Tracker in Bezug auf Genauigkeit, Energiever-
brauch und Kosten mit teureren kommerziellen Produkten vergleichbar kann. Dariiber hinaus
bietet der entwickelte GPS-Tracker eine hohe Flexibilitdt und Anpassungsfihigkeit, die es ermog-
licht, ihn an verschiedene Anwendungsszenarien anzupassen. Die entwickelte PC-Anwendung
ermoglicht es dem Benutzer, die aufgezeichneten Daten zu visualisieren und zu analysieren,
was eine detaillierte Auswertung der zuriickgelegten Wege ermoglicht. Damit leistet die Arbeit
einen positiven Beitrag zur Entwicklung von kostengiinstigen GPS-Trackern und eroffnet neue

Moglichkeiten fiir die Anwendung dieser Technologie in verschiedenen Bereichen.

INHALTSVERZEICHNIS 11

Inhaltsverzeichnis
Kurzzusammenfassung |
Abbildungsverzeichnis \'
Tabellenverzeichnis Vil
Listings Vil
Abkriizungsverzeichnis X
1 Einflihrung 1
1.1 Hintergrundund Relevanz 1
1.2 Zielsetzung e e 2
1.3 Vorgehensweise e 4
2 Grundlagen und Designentwurf 5
2.1 Mikrocontroller 5
2.1.1 Grundlegende Begriffe von Mikrocontrollern 5
2.1.2 Auswahl des Mikrocontrollers 7
2.1.3 Auswahl des Entwicklungsboards 8
2.1.4 Auswahl der Programmiersprache und der Entwicklungsumgebung (IDE) 9
22 GPSModul 10
2.2.1 Grundlegende Begriffe des Global Positioning Systems 10
2.2.2 Berechnung und Umwandlung der GPS-Koordinaten 11
2.2.3 Auswahl der seriellen Schnittstellen (UART) 13
224 AuswahldesGPSModuls 15
2.3 Display mit I2C Schnittstelle Modul 16
2.3.1 Auswahl der seriellen Schnittstellen I2C/TWI) 16
2.3.2 Auswabhl des Displays mit [2C Schnittstelle 18
24 SD-Karte Modul 20
2.4.1 Auswahl der seriellen Schnittstellen (SPI) 20

24.2 Grundlegende Begriffe von SD-Karte 22

Inhaltsverzeichnis i
3 Umsetzung und Softwareentwicklung 25
3.1 Bauteilverbindung 25

3.2 Entwicklung der Mikrocontroller-Firmware 27
3.2.1 Beschreibung von initializeSystem() 30

3.2.2 Beschreibung von lesenSDCard() 33

3.2.3 Beschreibung von abholenGPSDaten() 38

3.2.4 Beschreibung von verarbeitenGPSLine() 40

3.2.5 Beschreibung von EEPROM_speicherAddress() 46

3.2.6 Beschreibung von EEPROM_lesenAddress() 46

3.277 Beschreibung von ISR(INTO_vect) 47

3.2.8 Beschreibung von ISR(INT1_vect) 49

3.3 Entwicklung der PC-Anwendung 51
3.3.1 Beschreibung von COMDatenLesen() 53

3.3.2 Beschreibung von aktuellesDatumHolen() 54

3.3.3 Beschreibung von aktuellesDatumUndUhrzeitHolen() 55

3.3.4 Beschreibung von BreitenlLdngengradKonvertieren() 57

3.3.5 Erstellung von GPX-Datei 59

3.3.6 Beschreibung von abschluss 61

4 Test und Ergebnisse 65
4.1 Funktionstests 65
4.1.1 Vorgehensweise von Funktionstest 65

4.1.2 Ergebnisse von Funktionstest, 66

4.2 Demonstrationsbeispiel L o 67
4.2.1 Testverfahren und Validierung der Funktionalitaten 68

4.2.2 Testverfahren und Validierung der Zuverlédssigkeit. 71

4.2.3 Testverfahren und Validierung in hohe Geschwindigkeit 73

4.3 Ergebnisse der Test- und Validierungsphase 75

5 Zusammenfassung und Ausblick 76
5.1 Zusammenfassung der Arbeitsergebnisseo 76
5.2 Ausblick auf zukiinftige Entwicklungen und Anwendungen 77

Literaturverzeichnis

78

INHALTSVERZEICHNIS v

Anhang: Code-Listings der Mikrocontroller-Firmware 80
Anhang: Code-Listings der PC-Anwendung 92

Eidesstattliche Erklarung 100

ABBILDUNGSVERZEICHNIS Vv
Abbildungsverzeichnis
2.1 Aufbau eines typischen Mikrocontrollers [2] 5
2.2 Die Anschlussbelegung des ATmega88PA in der Bauform PDIP28 [4] 8
23 DasmyAVR Board MK2 [5] 9
2.4 Das Prinzip der Trilateration [8] 12
2.5 Zeitlicher Verlauf der Ubertragung eines Bytes bei der Verwendung des UART-
Protokolls [10] 14
2.6 Die Pins des CD-PA1616D GNSS Patch-Antennenmoduls [11] 15
2.7 Synchronisierung beim I2C-Protokoll [10] 17
2.8 Start- und Stoppbedingungen im I2C-Protokoll [10] 18
2.9 Ein vollstindiger 2C-Kommunikationszyklus (Beispiel) [10] 19
2.10 LCD-Display mit I2C-Schnittstelle 1602A HD44780 [12] 20
2.11 SPI-Verbindungsstruktur zwischen einem Master und einem Slave [10] 21
2.12 Signalverlauf der SPI-Dateniibertragung [10] 21
3.1 Verbindung der Hardwarekomponenten 26
3.2 Verbindung des GPS-Moduls mit dem Mikrocontroller 27
3.3 UART-Kommunikation zwischen PC, Mikrocontroller und GPS-Modul 27
3.4 Verbindung des LCD-Displays mit dem Mikrocontroller 28
3.5 Belegung der Kontakte einer SD-Karte und deren Anschluss an einen Mikrocon-
trollerim SPI-Modus L 28
3.6 Verbindung der Taster mit dem Mikrocontroller 29
3.7 Struktur und Funktionsweise der initializeSystem() Funktion 30
3.8 Display mit der Meldung Messung starten durch Taste 1 32
3.9 Display mit der Meldung Weiter messen durch Taste 1 32
3.10 Display mit der Meldung Keine SD-Karte! 33
3.11 Struktur und Funktionsweise der 1esenSDCard() Funktion 34
3.12 Display mit der Meldung Lesen... 37
3.13 Display mit der Meldung Lesen erfolgreich! 38
3.14 Struktur und Funktionsweise der abholenGPSDaten() Funktion 39
3.15 Struktur und Funktionsweise der verarbeitenGPSLine() Funktion. 41

ABBILDUNGSVERZEICHNIS %4

3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25

3.26

3.27
3.28

3.29

4.1
42
43
4.4
45
4.6
4.7

Display mit der Meldung Kein GPS-Signal! 42
Display mitden GPS-Daten 43
Sektor Q auf der SD-Karte Lo L. 46
Sektor 1 aufder SD-Karte 46
Struktur und Funktionsweise der ISR(INT®_vect) Funktion 48
Struktur und Funktionsweise der ISR(INT1_vect) Funktion 50
Struktur und Funktionsweise der COMDatenLesen() Funktion 53
Benutzeroberfliche zur Konfiguration des COM-Ports 54
Struktur und Funktionsweise der aktuellesDatumHolen() Funktion 55

Struktur und Funktionsweise der aktuellesDatumUndUhrzeitHolen() Funk-

Struktur und Funktionsweise des abschluss Abschnitts 62

Benutzeroberflache der PC-Anwendung nach Abschluss des Datenverarbeitungs-

PIOZESSES © v v v v e e e e e e e e e e e e e e e e e e 63
Inhalt der GPX-Datei ,,Output_20240216_143811.gpx*“ 63
aufgezeichnete Strecke im 1. Testin gpx.studio 68
aufgezeichnete Strecke im 1. Test in gpx.studio (vergroBert) 69
aufgezeichnete Strecke im 1. Test mitHandy 70
aufgezeichnete Strecke im 2. Testin gpx.studio 71
aufgezeichnete Strecke im 2. Test in gpx.studio (vergroBert) 72
aufgezeichnete Strecke im Auto-Test in gpx.studio 73

aufgezeichnete Strecke im Auto-Test in gpx.studio (vergrofert) 74

TABELLENVERZEICHNIS \%/4

Tabellenverzeichnis

1.1

2.1
22

4.1

Funktionsanforderung des Tracking-Systems 3

In der Praxis haufig verwendete Baudraten [10] 15
Belegung der Kontakte einer SD-Karte und deren Anschluss an einen Mikrocon-

troller im SPI-Modus [13] 24

GPS Tracker Testergebnisse 66

LISTINGS VIII

Listings

3.1
3.2
33
34
3.5
3.6
3.7
3.8
39
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23

5.1
5.2

Quellcode der 1cd_clear () Funktion von Bibliothek 1cd.c 33
Quellcode der 1cd_print () Funktion von Bibliothek 1cd.c 34
Quellcode der setBaudRate() Funktion 35

Quellcode der SD_readSingleBlock () Funktion von Bibliothek sd_card.c. 35

Quellcode der uart®_available() Funktion von Bibliothek uart.c 38
Beispiel einer GNGGA-Zeile 40
Quellcode zur Uberpriifung des GPS-Fix-Status 42
Quellcode der 1cd_setcursor () Funktion von Bibliothek 1cd.c 43
Quellcode der speichernSDCard() Funktion von Bibliothek sd_card.c . .. 44
Quellcode der EEPROM_speicherAddress() Funktion 46
Quellcode der EEPROM_lesenAddress() Funktion 47
Quellcode der ISR(INTO_vect) Funktion 48
Quellcode der ISR(INT1_vect) Funktion 49
Quellcode der COMDatenLesen Funktion 53
Quellcode der aktuellesDatumHolen Funktion 55
Quellcode der aktuellesDatumUndUhrzeitHolen Funktion 56
Quellcode der BreitengradKonvertieren Funktion 58
Quellcode der LangengradKonvertieren Funktion 58
Beispiel einer GPX-Dateio o 60
Quellcode der GPXOrdnerErstellen Funktion 60
Quellcode der GPXDateiErstellen Funktion. 61
Quellcode der TerminalAusgabe Funktion 61
Quellcode des Abschnitts abschluss 62
vollstandiger Quellcode des Mikrocontroller-Programms 80

vollstandiger Quellcode der PC-Anwendung 92

ABKRUZUNGSVERZEICHNIS IX

AbKriizungsverzeichnis

API Application Programming Interface
CAN Controller Area Network

CPU Central Processing Unit

DMA Direct Memory Access

EEPROM Electrically Erasable Programmable Read-Only Memory
GND Ground

GNSS Global Navigation Satellite System
GPIO General Purpose Input/Output

GPS Global Positioning System

GPX GPS Exchange Format

GUI Graphical User Interface

HSHL Hochschule Hamm-Lippstadt

1/0 Input/Output

12C Inter-Integrated Circuit

IDE Integrated Development Environment
INT Interrupt

ISR Interrupt Service Routine

KML Keyhole Markup Language

LCD Liquid Crystal Display

MISO Master In Slave Out

MOSI Master Out Slave In

ABKRUZUNGSVERZEICHNIS

PC

PCB

RAM

ROM

RST

RTC

RX

SCL/SCK

SD

SDA

SDHC

SDXC

SPI

SRAM

SS

TWI

TX

UART

USB

VCC

WLAN

Personal Computer

Printed Circuit Board

Random Access Memory
Read-Only Memory

Reset

Real-Time Clock

Receive

Serial Clock

Secure Digital

Serial Data

Secure Digital High Capacity
Secure Digital eXtended Capacity
Serial Peripheral Interface

Static Random Access Memory
Slave Select

Two-Wire Interface

Transmit

Universal Asynchronous Receiver Transmitter
Universal Serial Bus

Voltage Common Collector

Wireless Local Area Network

1 EINFUHRUNG 1

1 Einfuhrung

1.1 Hintergrund und Relevanz

In der heutigen Zeit spielt das GPS-Tracking eine immer groflere Rolle. Die Anwendungsbereiche
von GPS-Tracking sind vielfdltig. In der Logistikbranche wird GPS-Tracking eingesetzt, um
die genaue Position von Waren und Fahrzeugen zu verfolgen. Dies ermdglicht eine effiziente
Routenplanung und eine prizise Lieferverfolgung. Im Flottenmanagement wird GPS-Tracking
verwendet, um die Position und den Betriebsstatus von Fahrzeugen zu iiberwachen. Dies
ermoglicht eine effiziente Flottenverwaltung und eine prizise Fahrzeugortung. Dariiber hinaus
wird GPS-Tracking auch im Bereich der Navigation eingesetzt, um die genaue Position und den

Weg zu einem Zielort zu bestimmen.

In Szenarien, die einen intensiven Einsatz von Trackern erfordern, oder in schwer zuginglichen
Bereichen wie Wildern oder Bergen, ist es jedoch oft schwierig, die Kosten fiir meisten
kommerziellen GPS-Tracker zu tragen. Die Entwicklung eines kostengiinstigen GPS-Trackers,
der dennoch zuverlédssige und genaue Daten liefert, konnte daher eine attraktive Alternative
darstellen. Ein solches System konnte nicht nur die Kosten fiir die Anschaffung und Wartung von

Trackern senken, sondern auch die Effizienz und Genauigkeit der Positionsverfolgung verbessern.

Ein Beispiel dazuist[1]. Dieses Beispiel erklirt eine Richtung, dass die GPS-Tracking-Technologie
im Tierschutz eingesetzt wird. In diesem Fall spielt der GPS-Tracker eine wichtige Rolle, wenn
sich der Gesundheitszustand der Wildtiere verschlechtert. Die GPS-Tracker verwendet einen
kostengiinstigen Mikrocontroller (ATmega88PA), werden an den Tieren befestigt und zeichnen
die GPS-Koordinaten in festgelegten Zeitintervallen auf. Dazu kann auch die Position des Tieres

an die zustdndige Behorde senden, um eine schnelle Rettung zu ermdglichen.

1 EINFUHRUNG 2

1.2 Zielsetzung

Das Hauptziel dieser Arbeit ist die Entwicklung eines effizienten und benutzerfreundlichen
GPS-Tracking-Systems auf Basis eines kostengiinstigen Mikrocontrollers. Dieses System soll
nicht nur in der Lage sein, GPS-Koordinaten und Zeitstempel in vordefinierten Intervallen
prizise aufzuzeichnen, sondern auch die gesammelten Daten sicher und zuginglich auf einer
SD-Karte zu speichern. Eine wesentliche Funktion ist die Echtzeitanzeige der GPS-Koordinaten
auf einem LCD-Display, was eine unmittelbare Orientierung und Positionsverfolgung ermdoglicht.
Zusitzlich ist die Steuerung der Messung und das Auslesen der Daten {iber Taster vorgesehen, um
eine einfache Handhabung zu gewihrleisten. Ein weiteres zentrales Ziel ist die Entwicklung einer
PC-Anwendung, die nicht nur die Visualisierung der empfangenen Daten ermoglicht, sondern
auch deren Speicherung in einem nutzerfreundlichen Format. Die Losung soll dabei nicht nur
kosteneffizient und einfach in der Bedienung sein, sondern auch eine hohe Zuverlissigkeit und

Genauigkeit bieten.

Um diese Ziele zu erreichen, wurde wihrend der Entwicklungsphase des GPS-Trackers unter
Einsatz eines kostengiinstigen Mikrocontrollers eng mit Prof. Dr. Axel Thiimmler zusammen-
gearbeitet, um die grundlegenden Anforderungen zu definieren. Diese Anforderungen wurden
in weiteren Gespriachen und Beratungen mit dem wissenschaftlichen Mitarbeiter Ilya Raza
spezifiziert und verfeinert. Die Ergebnisse dieser Diskussionen fiihrten zu den in Tabelle 1.1

zusammengefassten Grundanforderungen fiir die Produktentwicklung.

mailto:axel.thuemmler@hshl.de
mailto:ilya.raza@hshl.de

1 EINFUHRUNG 3

Tabelle 1.1: Funktionsanforderung des Tracking-Systems

Nr | Funktion Beschreibung der Anforderung

Ermoglicht es dem Benutzer, die Messung zu starten,
zu pausieren und neu zu initialisieren, was eine flexi-
1 | Taster-Bedienung ble Handhabung der Datenerfassung ermoglicht. Das
System unterstiitzt auch das Starten des Lesens der

Daten.

Zeigt die aktuelle Position und den Zeitstempel in Echt-
. . zeit an. Informiert den Benutzer iiber den aktuellen
2 | Anzeigefunktion
Betriebsstatus und ermdglicht eine unmittelbare Riick-

meldung wihrend des Betriebs.

Speichert die aufgezeichneten GPS-Daten und Zeitstem-
pel sicher auf einer SD-Karte, was eine langfristige
3 | Speicherfunktion .
Datensicherung und einfache Ubertragbarkeit ermog-

licht.

Ermoglicht das Auslesen der auf der SD-Karte gespei-
4 | Lesefunktion cherten Daten, was eine spitere Analyse und Visualisie-

rung der aufgezeichneten Routen unterstiitzt.

Konvertiert die ausgelesenen Daten in ein benutzer-
freundliches Format, das es ermoglicht, den Messungs-
5 | Erstellung lesbarer Dateien
pfad visuell auf einer Karte darzustellen und somit eine

detaillierte Analyse der zuriickgelegten Wege bietet.

Entwickelt eine intuitive PC-Anwendung fiir die Visua-
Benutzerfreundliche lisierung, Bearbeitung und Speicherung der GPS-Daten,

PC-Anwendung die eine einfache Interaktion mit den gesammelten In-

formationen ermoglicht.

Die oben entwickelten Anforderungen bildeten den Rahmen fiir die Gestaltung des Tracking-
Systems und stellten sicher, dass es die Anforderungen der verschiedenen Stakeholder erfiillte.
Die Einbeziehung von Expertenmeinungen hat wesentlich zur Qualitit und Effektivitit des

entwickelten Systems beigetragen.

1 EINFUHRUNG 4

1.3 Vorgehensweise

Die Entwicklung eines GPS-Tracking-Systems folgt einem strukturierten Vorgehen, das sicher-
stellt, dass die Anforderungen der Stakeholder erfiillt und technische Herausforderungen effizient

bewiltigt werden. Dieser Prozess beinhaltet mehrere Kernschritte:

Anforderungsanalyse: Zu Beginn des Projekts steht die Ermittlung und Analyse der Anforderun-
gen an das GPS-Tracking-System. Hier werden die Bediirfnisse und Erwartungen der Stakeholder

genau definiert.

Literaturrecherche und Designentwurf: Nach der Anforderungsanalyse folgt die Recherche
technischer Grundlagen, die fiir die Entwicklung des Systems notwendig sind. In diesem
Schritt werden passende Hardwarekomponenten ausgewihlt und ein vorlaufiges Softwaredesign

entwickelt.

Umsetzung und Softwareentwicklung: Im nichsten Schritt erfolgt die eigentliche Entwicklung
des Systems. Die ausgewihlten Hardwarekomponenten werden beschafft, miteinander verbunden
und mit der entwickelten Software ausgestattet. Zusatzlich wird eine Anwendung fiir den PC

entwickelt, die die Datenverwaltung und -analyse ermoglicht.

Test und Validierung: Nach der Entwicklung des Systems werden umfangreiche Tests durch-
gefiihrt, um die Funktionalitdt und Zuverlassigkeit des GPS-Tracking-Systems zu liberpriifen.
Diese Phase beinhaltet sowohl Simulationstests als auch die Bewertung der Datenprizision und

Systemzuverladssigkeit.

Ergebnisse und Diskussion: Abschliefend werden die Ergebnisse der Test- und Validierungs-
phase prisentiert und diskutiert. Dabei wird untersucht, inwieweit das entwickelte System die
anfangs definierten Anforderungen erfiillt und den Erwartungen der Stakeholder entspricht.
Zusitzlich werden mogliche Verbesserungen und Erweiterungen fiir das System identifiziert und

vorgeschlagen.

2 GRUNDLAGEN UND DESIGNENTWURF 5

2 Grundlagen und Designentwurf

In diesem Abschnitt werden die technischen Grundlagen fiir die Entwicklung des GPS-Tracking-
Systems recherchiert. Dazu gehoren die Auswahl der Hardwarekomponenten und die Integration
der Komponenten. Die Ergebnisse der Recherche und Analyse bilden die Grundlage fiir den

Designentwurf des GPS-Tracking-Systems.

2.1 Mikrocontroller

2.1.1 Grundlegende Begriffe von Mikrocontrollern

Mikrocontroller sind integrierte Schaltungen, die einen Mikroprozessor, Speicher und Ein-
/Ausgabeperipherie auf einem einzigen Chip vereinen [2]. Ein wesentliches Anwendungsfeld
von Mikroprozessoren und insbesondere Mikrocontrollern sind die sogenannten eingebetteten

Systeme (Embedded Systems) [2].

Mikrocontroller
Prozessor- RAM EI}EISE\)/IM
kern Takt
EEPROM
e L Zihler/Zeit- I
/Ausgabe- brechungs- geber Erweiterungs-
steuerung steuerung busschnittstelle

v vVy

Abbildung 2.1: Aufbau eines typischen Mikrocontrollers [2]

Abbildung 2.1 zeigt den Aufbau eines typischen Mikrocontrollers. Mikrocontroller bestehen aus
verschiedenen Komponenten, die auf die Losung von Steuerungs- und Kommunikationsaufgaben
zugeschnitten sind. Die wichtigsten Komponenten sind der Prozessorkern, der Speicher, die
Ein-/Ausgabeeinheiten, die zeitgeberbasierten Einheiten, die Unterbrechungssteuerung und die

DMA (Direct Memory Access) [2].

Der Prozessorkern, der die Befehle des Programms ausfiihrt und die anderen Komponenten

2 GRUNDLAGEN UND DESIGNENTWURF 6

steuert. Der Prozessorkern kann verschiedene Architekturen aufweisen, wie z.B. CISC, RISC,
VLIW oder EPIC. Die Architektur bestimmt die Struktur und den Umfang des Befehlssatzes,
die Anzahl und Art der Register, die Adressraumorganisation, die Pipelinetechniken und die

Unterstiitzung von Parallelitit und Spekulation [2].

Der Speicher kann aus verschiedenen Typen bestehen, wie z.B. Festwertspeicher (ROM),
Schreib-/Lesespeicher (RAM) oder Flash-Speicher. Der Speicher kann intern oder extern zum
Mikrocontroller angebunden sein. Die Speichergrofle, die Zugriffszeit, die Lebensdauer und die

Programmierbarkeit sind wichtige Faktoren fiir die Speicherauswahl [2].

Die Ein-/Ausgabeeinheiten, die die Schnittstellen zu den externen Gerédten und Sensoren bilden.
Die Ein-/Ausgabeeinheiten konnen digital oder analog sein, parallel oder seriell, synchron oder
asynchron. Sie konnen verschiedene Standards und Protokolle unterstiitzen, wie z.B. UART,
SPI, I12C, CAN, USB, Ethernet oder WLAN. Die Ein-/Ausgabeeinheiten konnen direkt an den

Prozessorkern oder liber einen Erweiterungsbus angeschlossen sein [2].

Die zeitgeberbasierten Einheiten, die die zeitliche Steuerung und Uberwachung der Mikrocon-
trollerfunktionen ermdglichen. Die zeitgeberbasierten Einheiten konnen aus Zahlern, Zeitgebern,
Capture-und-Compare-Einheiten, Pulsweitenmodulatoren, Watchdog-Einheiten oder Echtzeit-

Ein-/Ausgabeeinheiten bestehen [2].

Die Unterbrechungssteuerung, die die Reaktion des Mikrocontrollers auf interne oder externe Er-
eignisse ermoglicht. Die Unterbrechungssteuerung kann aus einem Unterbrechungsvektor, einem
Unterbrechungsprioritétsregister, einem Unterbrechungsstatusregister und einem Unterbrechungs-
maskenregister bestehen. Sie kann verschiedene Unterbrechungsquellen und -arten verwalten,
wie z.B. Hardware- oder Softwareunterbrechungen, maskierbare oder nicht-maskierbare Unter-
brechungen, vorrangige oder gleichrangige Unterbrechungen. Sie kann verschiedene Unterbre-
chungsbehandlungsverfahren durchfiihren, wie z.B. Polling, Daisy-Chaining oder Vektorisierung

[2].

Die DMA (Direct Memory Access), die die direkte Ubertragung von Daten zwischen Speicher
und Ein-/Ausgabeeinheiten ohne Beteiligung des Prozessorkerns ermoglicht. Die DMA kann aus
einem DMA-Controller, einem DMA-Kanalregister, einem DMA-Adressregister und einem DMA-
Zihlerregister bestehen. Sie kann verschiedene DMA-Modi und -Verfahren unterstiitzen, wie z.B.
Burst- oder Cycle-Stealing-Modus, Single- oder Multi-Transfer-Verfahren, Memory-to-Memory-

oder Memory-to-Peripheral-Verfahren [2].

2 GRUNDLAGEN UND DESIGNENTWURF 7

2.1.2 Auswahl des Mikrocontrollers

Fiir die Entwicklung eines GPS-Trackers wurde ein Vergleich verschiedener auf dem Markt
erhiltlicher Mikrocontroller durchgefiihrt, wobei besonderes Augenmerk auf bestimmte Kriterien
gelegt wurde. Die Verfiigbarkeit des Mikrocontrollers ist entscheidend, da er leicht zu beschaffen
sein sollte und eine lange Lebensdauer aufweisen muss. Gleichzeitig spielt der Preis eine wichtige
Rolle, um die Gesamtkosten des Trackers zu minimieren. Eine ausfiihrliche und verstdndliche
Dokumentation erleichtert die Programmierung und den Einsatz des Mikrocontrollers erheblich.
Die Unterstiitzung durch den Hersteller sowie eine aktive Community sind ebenfalls von

Bedeutung, da sie bei Fragen und Problemen hilfreich sein konnen.

Die Bauformen, in denen der Mikrocontroller verfiigbar ist, miissen vielfiltig sein, um eine flexible
Anpassung an das Design des Tracker-Gehéduses zu ermoglichen. Der Betrieb des Mikrocontrollers
bei niedriger Spannung ist wichtig, um Kompatibilitit mit anderen Tracker-Komponenten zu
gewihrleisten. Ein geringer Stromverbrauch ist entscheidend fiir die Langlebigkeit des Trackers im
Batteriebetrieb. Die Taktgeschwindigkeit des Mikrocontrollers muss hoch genug sein, um GPS-
Daten effizient verarbeiten und iibertragen zu konnen. Schlielich ist ausreichender Speicherplatz,
sowohl im Flash-Speicher als auch im RAM, notwendig, um das Programm und die Daten

speichern zu konnen.

Nach einem Vergleich verschiedener Mikrocontroller-Familien, wie z.B. AVR, PIC, MSP430,
Zilog, NXP und STM32, wurde die AVR-Familie von Microchip (frither Atmel) als geeignete
Wahl identifiziert [3]. Die AVR-Mikrocontroller zeichnen sich durch eine klare, moderne und
tibersichtliche Struktur aus, die die Vermittlung von Grundlagenwissen erleichtert. Sie haben
einen gemeinsamen Befehls- und Registersatz, der die Portabilitit der Programme ermoglicht.
Sie sind weit verbreitet und haben eine groe Nutzer- und Entwicklergemeinschaft. Sie sind in
verschiedenen Bauformen und Preisklassen erhéltlich und bieten eine hohe Leistung bei geringem

Stromverbrauch.

Innerhalb der AVR-Familie wurde der ATmega88PA als konkreter Mikrocontroller fiir den GPS-
Tracker ausgewihlt. Der ATmega88PA ist ein 8-Bit-Mikrocontroller mit einem RISC-Prozessor,
der mit bis zu 20 MHz getaktet werden kann [4]. Er hat 8 KB Flash-Speicher, 512 Byte EEPROM
und 1 KB SRAM [4]. Er hat 23 programmierbare I/0-Pins, die in 6 Ports organisiert sind [4]. Der
ATmega88PA ist in verschiedenen Bauformen erhiltlich, wie z.B. PDIP28, TQFP32, QFN32,
MLF32, VQFN32, SOIC28, SOIC32, TSSOP28, TSSOP32, DFN28, DFN32, WLCSP32 [4].

2 GRUNDLAGEN UND DESIGNENTWURF 8

Dazu wird Bauform PDIP28 fiir die Entwicklung und den Einsatz des GPS-Trackers verwendet
und kostet etwa 1,5 bis 3 Euro pro Stiick (Stand: 2024 Microchip). Er hat eine serielle UART-
Schnittstelle, eine serielle SPI-Schnittstelle, eine serielle TWI-Schnittstelle (I2C) [4]. Er kann
mit einer Spannung von 1,8 V bis 5,5 V betrieben werden und hat einen Stromverbrauch von
0,2 mA im Aktivmodus [4]. Er hat eine ausfiihrliche und verstindliche Dokumentation und
wird vom Microchip Studio (friiher Atmel Studio 7) unterstiitzt. Der ATmega88PA erfiillt die
Anforderungen an den Mikrocontroller fiir den GPS-Tracker und bietet eine gute Grundlage fiir
die Entwicklung und den Einsatz des Trackers. Abbildung 2.2 zeigt die Anschlussbelegung des
ATmega88PA in einem 28-poligen PDIP-Gehause.

T
(PCINT14/RESET) PC6 [1 28 [1 PC5 (ADC5/SCL/PCINT13)
(PCINT16/RXD) PDO [2 27 [1 PC4 (ADC4/SDA/PCINT12)
(PCINT17/TXD) PD1 3 26 [1PC3 (ADC3/PCINT11)
(PCINT18/INTO) PD2 [] 4 25 [1 PC2 (ADC2/PCINT10)
(PCINT19/0C2B/INT1) PD3 [| 5 24 [1PC1 (ADC1/PCINTO)
(PCINT20/XCK/T0) PD4 [6 23 [1 PCO (ADCO/PCINTS)
vee 7 22 [1 GND
GND[]8 21 [J AREF
(PCINT6/XTAL1/TOSC1) PB6 [] 9 20 [1 AVCC
(PCINT7/XTAL2/TOSC2) PB7 [10 19 [0 PB5 (SCK/PCINTS5)
(PCINT21/0COB/T1) PD5 [] 11 18 [1 PB4 (MISO/PCINT4)
(PCINT22/0COA/AINO) PD6 [12 17 [0 PB3 (MOSI/OC2A/PCINT3)
(PCINT23/AIN1) PD7 [] 13 16 [1 PB2 (SS/OC1B/PCINT2)
(PCINTO/CLKO/ICP1) PBO [] 14 15 [0 PB1 (OC1A/PCINT1)

Abbildung 2.2: Die Anschlussbelegung des ATmega88PA in der Bauform PDIP28 [4]

2.1.3 Auswahl des Entwicklungsboards

Um den ATmega88PA zu programmieren und zu testen, wurde das my AVR Board MK2 verwendet.
Abbildung 2.3 zeigt das myAVR Board MK2. Das myAVR Board MK2 hat einen ATmega88PA-
Mikrocontroller in einem PDIP28-Gehause, der mit einem 3686400-MHz-Quarzoszillator getaktet
wird. Uber Microchip JTAGICE3 Debugger kann der ATmega88PA auf dem myAVR Board MK2
programmiert und debuggt werden. AuBerdem bietet das Board verschiedene Schnittstellen und
Anschliisse, wie z.B. USB, UART, SPI, 12C, was geeignet fiir die Entwicklung und den Einsatz des
GPS-Trackers ist. Dariiber hinaus bietet das Board zwei Taster, was fiir die Benutzerinteraktion

des GPS-Trackers niitzlich ist [5].

2 GRUNDLAGEN UND DESIGNENTWURF 9

USB Anschluss | ISP Interface
USB interface Externe
Spannungsversorgung
external power supply
RISC pController - =
‘ ¥ -
L
LED low activ
pTaster/Schalter (digital) : .
J buttons/switch (digital) : -
. " Frequenzwandler
- frequency converter
Potenziometer (analog)
Potenziometer (analog)
— LEDs (digital/analog)
Lichtsensor (analog) X
photo sensor (analog) » IR Sender (optional)
IR transmitter (optional)
IR Empfanger (optional) Ausgabege_réite
IR receiver (optional) output devices
: 5 Pinbelegung der Erweiterungsbuchse
Eingabegerate ; . .
i Pin assignments of the Add-On-socket Erweiterungsbuchse
inputosvices Add-On-socket
NOITOON O NMIT W O N®Mt
[ajalalalala] ooOmmMmam [CHORONORGNS]
rrebt creEtrr Q rroetoEtr
O o000 O0O0 O 00000 >z O 00000
foooOoQd ocooaococao vwd® doocaoaooc
numnnnn LU L | L I A 1} mnn LU L | | N [1}
—ANMT WO MNOOO~— N oM < l.OLOI\OOO)g

Abbildung 2.3: Das myAVR Board MK2 [5]

2.1.4 Auswahl der Programmiersprache und der Entwicklungsumgebung (IDE)

Die Programmierung von Mikrocontrollern erfordert die Verwendung von geeigneten Pro-
grammiersprachen und Entwicklungsumgebungen, die an die spezifischen Anforderungen und
Eigenschaften dieser Gerite angepasst sind. Die Wahl der Programmiersprache hingt von
verschiedenen Faktoren ab, wie z.B. dem Ziel des Projekts, den verfiigbaren Ressourcen, den
personlichen Vorlieben und der Erfahrung des Entwicklers. Daher ist es wichtig, die Anforderun-
gen und Erwartungen des jeweiligen Projekts zu beriicksichtigen und die Sprache entsprechend
auszuwdhlen. Neben der Programmiersprache ist auch die Entwicklungsumgebung ein wichtiger
Aspekt der Mikrocontroller-Programmierung. Die Entwicklungsumgebung ist die Software, die
dem Entwickler Werkzeuge zur Verfiigung stellt, um den Code zu schreiben, zu kompilieren, zu
ibertragen, zu debuggen und zu testen. Es gibt verschiedene Entwicklungsumgebungen fiir Mikro-
controller, die je nach der verwendeten Programmiersprache, dem verwendeten Mikrocontroller

und den gewiinschten Funktionen variieren.

In diese Arbeit wird C Sprache verwendet, weil C Sprache direkte Kontrolle iiber die Hardware und
eine hohe Leistung ermoglicht. C Sprache ist auch eine portable Sprache, die auf verschiedenen

Plattformen und Architekturen verwendet werden kann. AuB3erdem wird Microchip Studio (frither

2 GRUNDLAGEN UND DESIGNENTWURF 10

Atmel Studio 7) verwendet, weil Microchip Studio eine integrierte Entwicklungsumgebung
(IDE) ist, die fiir die Programmierung von Atmel-Mikrocontrollern, wie z.B. AVR und ARM,
entwickelt wurde [3]. Microchip Studio unterstiitzt die Programmierung in C/C++ mit einem
vollstindigen Zugrift auf die Hardware-Register und die Optimierung des Codes. Microchip
Studio bietet auch eine leistungsstarke und anpassbare GUI, die einen erweiterten Code-Editor,
einen integrierten Debugger, einen Simulator, einen Logikanalysator, einen Leistungsanalysator

und einen Geriteprogrammierer umfasst.

2.2 GPS Modul

2.2.1 Grundlegende Begriffe des Global Positioning Systems

Das Global Positioning System (GPS) ist ein satellitengestiitztes Navigationssystem, das es
Nutzern ermoglicht, ihre Position und Zeit auf der Erde zu bestimmen. GPS nutzt ein Netzwerk
von mindestens 24 Satelliten, die in sechs Umlaufbahnen um die Erde kreisen und kontinuierlich
Navigationsnachrichten aussenden [6]. Die Satelliten senden ihre Navigationsnachrichten mit
einer Frequenz von 1575,42 MHz (L1-Band) und 1227,60 MHz (L.2-Band) aus, die von GPS-
Empfingern empfangen und verarbeitet werden [7]. Diese Nachrichten enthalten Informationen
tiber die Position und die Zeit des Satelliten sowie Korrekturdaten fiir die Signalverzogerung und

die Umlautbahnabweichung.

Um die Position zu berechnen, empfiangt ein GPS-Empfinger die Navigationsnachrichten von
mindestens vier Satelliten und misst die Zeitdifferenz zwischen dem Aussenden und dem
Empfangen der Signale. Diese Zeitdifferenz entspricht der Entfernung zwischen dem Empféanger
und dem Satelliten, die als Pseudostrecke bezeichnet wird. Durch die Verwendung von mindestens
vier Pseudostrecken kann der Empfianger seine dreidimensionale Position (Lingen-, Breiten-
und Hohengrad) und die Zeit mit Hilfe eines mathematischen Verfahrens namens Trilateration
bestimmen [7]. Die Trilateration ist ein geometrisches Verfahren, das die Position eines Punktes
in einem Raum durch die Messung seiner Entfernung zu bekannten Punkten bestimmt. Die
Trilateration basiert auf der Losung eines Gleichungssystems, das die Entfernungen zu den
Satelliten und die Position des Empfangers enthélt. Die Losung des Gleichungssystems ergibt die
genaue Position des Empfingers. Das Gleichungssystem wird im Unterabschnitt 2.2.2 detailliert

beschrieben.

2 GRUNDLAGEN UND DESIGNENTWURF 11

GPS ist nicht das einzige System, das Satellitensignale zur Positionsbestimmung nutzt. Es gibt
auch andere globale Navigationssatellitensysteme (GNSS), wie z.B. das russische GLONASS,
das europdische Galileo und das chinesische Beidou [7]. Diese Systeme sind mit GPS kompatibel
und bieten dhnliche oder bessere Genauigkeit und Verfiigbarkeit. Dartiiber hinaus gibt es auch
regionale und lokale Systeme, die GPS ergénzen oder erweitern, wie z.B. das europédische EGNOS,
das japanische QZSS und das indische IRNSS. Diese Systeme bieten zusitzliche Signale oder

Korrekturdaten, um die Genauigkeit, Zuverldssigkeit und Integritit von GPS zu verbessern.

2.2.2 Berechnung und Umwandlung der GPS-Koordinaten

Die Berechnung der Position eines GPS-Empféangers basiert auf der Bestimmung der genauen
Entfernung zu mehreren GPS-Satelliten und der anschlieBenden Umrechnung dieser Entfernungen
in geographische Koordinaten (Breitengrad, Lingengrad und Hohe). Die Grundlage fiir die
Umrechnung bildet das Prinzip der Trilateration, das die Position des Empfingers durch die
Schnittpunkte von mindestens drei Kugeloberflichen, die um die Satelliten mit den Radien ihrer
Distanzen zum Empfinger gezogen werden, ermittelt [8]. Abbildung 2.4 zeigt das Prinzip der
Trilateration. In dieser Darstellung reprasentieren die Kugeln um die Satelliten Sy, S», und S3
die Distanzmessungen vom Empfinger zu diesen Punkten. Der GPS-Empféanger befindet sich
dort, wo sich alle drei Kugeloberflachen schneiden, was zu zwei moglichen Punkten fiihrt: P
und P’. In der Regel ist einer der Punkte, wie P, nicht plausibel (z.B. liegt er weit aulerhalb der
Erdoberfliche), und kann daher verworfen werden. Der iibrig bleibende Schnittpunkt P’ gibt die

genaue Position des Empféngers an.

Die Entfernung » zum Satelliten wird durch die Signaltransitzeit ¢ bestimmt, wobei die Lichtge-

schwindigkeit c als Konstante dient, wie in der Gleichung 2.1 gezeigt:

r=c-t 2.1

Unter Beriicksichtigung der Erdatmosphére und anderer Storfaktoren wird die Formel fiir die
Entfernungsberechnung erweitert, um Korrekturfaktoren einzuschlieen. Die Position (x, y, z)
des GPS-Empfingers in einem dreidimensionalen kartesischen Koordinatensystem, das im
Mittelpunkt der Erde zentriert ist, kann durch das Losen des Gleichungssystems aus den

Entfernungen zu mindestens drei Satelliten bestimmt werden, wie in der Gleichung 2.2 gezeigt:

2 GRUNDLAGEN UND DESIGNENTWURF 12

Abbildung 2.4: Das Prinzip der Trilateration [8]

(x=x5)*+(y—ys)* +(z-2z5) =1}
(x—x5,)° +(y—ys,)* +(z—z5,)> =713 (2.2)

(x —x5,)% + (y—ys,)* + (z—z5,)> =13

Hierbei sind (xs;, ys;, zs;) die Koordinaten der Satelliten und r; die gemessenen Entfernungen
zum Empfinger. Nach der Bestimmung der kartesischen Koordinaten des Empfangers konnen
diese in geographische Koordinaten (Langen-, Breiten- und Hohengrad) umgerechnet werden.
Die genaue Berechnung der GPS-Position erfordert zusétzlich die Anwendung von Korrekturen
fiir Signallaufzeitverzogerungen, die durch die Ionosphire und Troposphire verursacht werden,
sowie fiir die relativistische Zeitdilatation [9]. Durch die Integration dieser Korrekturen und die
Nutzung fortgeschrittener Algorithmen konnen moderne GPS-Empféanger Positionen mit einer

Genauigkeit von wenigen Metern ermitteln.

Geographische Koordinaten werden haufig im Grad-Minuten-Sekunden (DMS)-Format an-
gegeben. Um diese in das Dezimalgrad-Format umzurechnen, das in vielen geographischen
Informationssystemen und bei der Programmierung genutzt wird, kann folgende Methode ange-
wandt werden. Sei D der Wert in Grad, M der Wert in Minuten und S der Wert in Sekunden der
urspriinglichen Koordinaten. Die Umrechnung in Dezimalgrad D 4c, kann mit der Gleichung 2.3
durchgefiihrt werden. Dabei ist zu beachten, dass bei siidlichen Breitengraden und westlichen

Liangengraden das Ergebnis negativ ist, um die Richtung zu kennzeichnen. Falls bei einer

2 GRUNDLAGEN UND DESIGNENTWURF 13

Umrechnung negative Werte entstehen, kann das Vorzeichen einfach umgekehrt werden, um die

urspriingliche Richtung zu erhalten, wie in der Gleichung 2.4 gezeigt.

MS
Dy, =D+ 2= 4 > 2.
dez = B+ 20 T 3600 2-3)

M S

Dy, = —(D+ 2 4 2 2.4

dez (+60+3600) ()

Beispiel: Die Umwandlung von 49° 30’ 0” in Dezimalgrad wird wie folgt Gleichung 2.5
durchgefiihrt:

30 0)
49+@+_3600 =49.5 (2.5)

Diese Methode ermdglicht eine prézise und einfache Umrechnung von Koordinaten im DMS-
Format in das Dezimalgrad-Format, welches fiir weitere Berechnungen und Anwendungen

erforderlich ist.

2.2.3 Auswahl der seriellen Schnittstellen (UART)

Die serielle Kommunikation iiber UART (Universal Asynchronous Receiver/Transmitter) spielt
eine wesentliche Rolle in der Dateniibertragung zwischen verschiedenen elektronischen Geriten,
insbesondere in Anwendungen wie der Kommunikation mit GPS-Modulen. UART ist ein
universell einsetzbarer Sender und Empfinger fiir asynchrone Dateniibertragungen. Der Begriff
»asynchron* bedeutet, dass kein Taktsignal zwischen Sender und Empfianger ausgetauscht wird,
wodurch eine flexible und einfache Verbindung zwischen verschiedenen Systemen ermoglicht

wird [3], [10].

Jedes tlibertragene Datenpaket beginnt mit einem Startbit, gefolgt von einer vorher festgelegten
Anzahl von Datenbits, optional einem Parititsbit zur Fehlererkennung und einem oder mehreren
Stoppbits. Diese Struktur ermoglicht es dem Empféanger, jedes Wort aus dem kontinuierlichen
Datenstrom zu extrahieren, ohne dass eine externe Taktquelle erforderlich ist [3], [10]. Die
Abbildung 2.5 zeigt den zeitlichen Verlauf der Ubertragung eines Bytes bei der Verwendung des

UART-Protokolls. Es illustriert die Zusammensetzung eines typischen ,,Frames* aus Startbit,

2 GRUNDLAGEN UND DESIGNENTWURF 14

Datenbits, optionalem Parititsbit und Stoppbits. Die Ubertragung beginnt mit einem Startbit,
das auf niedrig (logisch 0) gesetzt ist, gefolgt von den Datenbits — beginnend mit dem Least
Significant Bit (Bit 0) bis zum Most Significant Bit (Bit 7). Optional kann ein Paritétsbit fiir die
Fehlererkennung eingefiligt werden, gefolgt von einem oder mehreren Stoppbits, die auf hoch
(logisch 1) gesetzt sind, um das Ende des Frames anzuzeigen. Der gesamte Frame endet in einer

Ruhephase, bevor das nichste Byte beginnt.

,Frame“

Bitdauer

>

t

Startbit fiir das
néchste Byte

~Ruhe”

Abbildung 2.5: Zeitlicher Verlauf der Ubertragung eines Bytes bei der Verwendung des
UART-Protokolls [10]

UART-Schnittstellen sind aufgrund ihrer Einfachheit und der geringen Anzahl bendtigter
Leitungen (hauptsidchlich Senden (TX) und Empfangen (RX)) in vielen Mikrocontrollern und
GPS-Modulen integriert [3], [10]. Diese Integration fiihrt zu geringeren Hardwarekosten und
einfacherer Implementierung im Vergleich zu komplexeren Kommunikationsprotokollen. Fiir
viele GPS-Anwendungen, wo die Datenrate und Komplexitit relativ gering sind, bietet UART
eine kosteneffiziente Losung. Die Tabelle 2.1 gibt einen Uberblick iiber typische Baudraten,
die in der Praxis verwendet werden, und die entsprechenden Bitdauern in Mikrosekunden (11s).
Die Baudrate definiert, wie viele Bits pro Sekunde iibertragen werden, und ist ein wesentlicher
Parameter bei der Konfiguration von UART-Schnittstellen. Eine hohere Baudrate ermdglicht eine
schnellere Dateniibertragung, erfordert jedoch auch eine prizisere Zeitabstimmung zwischen
Sender und Empféanger. Standard-Baudraten wie 9600 oder 115200 Bits pro Sekunde sind in der
Industrie weit verbreitet und werden hidufig fiir die Kommunikation mit GPS-Modulen eingesetzt,

da sie einen guten Kompromiss zwischen Geschwindigkeit und Zuverlédssigkeit bieten.

2 GRUNDLAGEN UND DESIGNENTWURF

15

Tabelle 2.1: In der Praxis hdufig verwendete Baudraten [10]

Baudrate (in bit/s) Bitdauer (in ps)
2400 416,67

9600 104,17

19.200 52,08

38.400 26,04

57.600 17,36

115.200 8,68

Dies macht UART besonders geeignet fiir die Kommunikation mit GPS-Modulen. GPS-Module
senden Daten in einem formatierten Textformat, welches leicht durch eine UART-Schnittstelle
interpretiert werden kann. Zudem benstigen GPS-Module oft keine hohen Ubertragungsraten,

was mit der typischen Leistungsfiahigkeit von UART-Verbindungen iibereinstimmt.

2.2.4 Auswahl des GPS Moduls

Der CD-PA1616D GNSS Patch-Antennenmodul, ausgestattet mit dem MediaTek GNSS-Chipsatz
MT3333, bietet eine Reihe von Merkmalen, die ihn fiir den Einsatz in GPS-Trackern besonders
geeignet machen. Abbildung 2.6 zeigt die Pins des CD-PA1616D GNSS Patch-Antennenmoduls.

w— 1 20 NC
NRESET 2 19 GND
GND 3 18 bE
VBACKUP 4 17 -
3D-FIX 5 16 g
NC 6 (Top View) 15 TX1(12C_SDA)
NC 7 14 [RX1(12C_SCL)
— 3 13 1PPS
o 9 12 GND
RXO 10 11 @ EX_ANT

Abbildung 2.6: Die Pins des CD-PA1616D GNSS Patch-Antennenmoduls [11]

Das Modul ist fiir die Nutzung der L1-Band GPS-Frequenz von 1575,42 MHz ausgelegt, welche
von GPS-Satelliten fiir zivile Zwecke genutzt wird, und kann ebenfalls die L1-Band GLONASS-
Frequenz von 1598,0625 bis 1605,375 MHz empfangen, die von GLONASS-Satelliten verwendet

2 GRUNDLAGEN UND DESIGNENTWURF 16

wird [11]. Mit einer hohen Empfindlichkeit von -165 dBm ist das Modul fihig, auch schwache
GPS-Signale zu empfangen, was in stidtischen oder bewaldeten Gebieten von groBer Bedeutung
ist, wo Signale leicht durch Gebidude oder Biume blockiert werden konnen [11]. Es bietet eine
hohe Positionsgenauigkeit von bis zu wenigen Metern, wobei die Positionsgenauigkeit ohne Hilfe
bei 3,0 m und mit DGPS-Unterstiitzung bei 2,5 m liegt [11]. Zudem zeichnet sich das Modul
durch eine kurze Startzeit aus, mit 1 s fiir einen heiflen Start, 33 s fiir einen warmen Start und 35
s fiir einen kalten Start, was fiir GPS-Tracker, die eine schnelle Standortbestimmung bendtigen,
essentiell ist [11]. Der niedrige Stromverbrauch von 34 mA im Erfassungsmodus und 29 mA im
Tracking-Modus macht das Modul ideal fiir batteriebetriebene Gerite wie GPS-Tracker [11]. Mit
einem Gewicht von 6 g und den kompakten Abmessungen von 16,0 mm x 16,0 mm x 6,7 mm

eignet es sich hervorragend fiir den Einsatz in tragbaren Geriten [11].

Diese Eigenschaften, insbesondere die hohe Sensitivitit, schnelle Startzeiten und geringer Strom-
verbrauch, machen den CD-PA1616D zu einer idealen Wahl fiir GPS-Tracking-Anwendungen,
bei denen Zuverldssigkeit und Effizienz entscheidend sind. Die kompakte Groe ermoglicht eine

einfache Integration in verschiedene Geréteformfaktoren.

2.3 Display mit I2C Schnittstelle Modul

2.3.1 Auswahl der seriellen Schnittstellen (I1I2C / TWI)

Die Inter-Integrated Circuit (I2C) Schnittstelle, auch als Two-Wire Interface (TWI) bekannt,
wurde in den frithen 1980er Jahren von Philips eingefiihrt und stellt eine wesentliche Komponente
in der Kommunikation zwischen verschiedenen integrierten Bausteinen auf einer Leiterplatte dar.
In diesem Abschnitt wird die Bedeutung und Funktionsweise dieser seriellen Schnittstelle erlautert
und begriindet, warum sie insbesondere fiir die serielle Kommunikation in Anzeigegeriten von

Bedeutung ist.

I2C ist ein synchrones, seriell arbeitendes Bussystem, das mit nur zwei Leitungen - SCL (Serial
Clock) und SDA (Serial Data) - eine effiziente Kommunikation zwischen Mikrocontrollern,
A/D-Umsetzern, D/A-Umsetzern, Speichern und anderen Komponenten ermoglicht [3], [10].
Durch die geringe Anzahl an erforderlichen Leitungen reduziert sich der Verkabelungsaufwand
erheblich, was gerade in komplexen Schaltungen wie bei Anzeigegeriten einen erheblichen

Vorteil darstellt.

2 GRUNDLAGEN UND DESIGNENTWURF 17

Die I2C-Anschliisse sind als Open-Collector- bzw. Open-Drain-Ausginge konzipiert, was bedeutet,
dass mehrere Gerite gleichzeitig an den Bus angeschlossen werden konnen, ohne dass es zu
Konflikten kommt. Jedes Gerit kann die Leitung auf einen Low-Pegel ziehen, aber keines kann
aktiv einen High-Pegel setzen. Dies wird durch Pull-Up-Widerstinde erreicht, die die Leitungen
im Ruhezustand auf High-Pegel halten [3], [10].

Bei Anzeigegeriiten ist die Ubertragung von Daten zwischen verschiedenen Komponenten wie
dem Mikrocontroller, Speicherbausteinen und dem Display-Controller von zentraler Bedeutung.
I12C/TWI bietet hierfiir eine flexible und effiziente Losung. Die Fihigkeit von I2C, mehrere
Gerite iiber nur zwei Leitungen zu verbinden, ermoglicht eine vereinfachte und kostengiinstige

Implementierung.

Zusitzlich unterstiitzt das [2C-Protokoll sowohl Master- als auch Slave-Konfigurationen, was
bedeutet, dass ein Gerit (z.B. ein Mikrocontroller) als Master fungieren und die Kommunikation
mit mehreren Slaves (z.B. Display) steuern kann. Dies ist besonders niitzlich in Anzeigegeriten,

wo der Mikrocontroller Informationen an verschiedene Komponenten des Displays senden muss

(31, [10].

Abbildung 2.7 stellt die Synchronisierung beim I2C-Protokoll dar. Sie zeigt, wie die Datenleitung
(SDA) und die Taktleitung (SCL) zusammenarbeiten, um eine synchrone Ubertragung zu
ermoglichen. Die Daten auf der SDA-Leitung werden nur gedndert, wenn das SCL-Signal auf
Low ist, was die Integritét der iibertragenen Daten sicherstellt. Dieses Timing ist entscheidend,
da eine Anderung der Daten wihrend eines High-Signals auf der SCL-Leitung als Start- oder

Stoppbedingung interpretiert werden konnte.

=
Q0
N
=
©
o)
= €
o) o
[} S
» S
< <7D
) Qo
n wn =2

ok

Abbildung 2.7: Synchronisierung beim I12C-Protokoll [10]

2 GRUNDLAGEN UND DESIGNENTWURF 18

Abbildung 2.8 zeigt die Start- und Stoppbedingungen im I2C-Protokoll. Die Startbedingung ist
durch einen Ubergang von High zu Low auf der SDA-Leitung bei einem High-Signal auf der SCL-
Leitung gekennzeichnet. Dies signalisiert allen Geréten auf dem Bus, dass eine Kommunikation
beginnt. Die Stoppbedingung ist das Gegenteil, wobei die SDA-Leitung von Low zu High

tibergeht, wihrend SCL High ist, was das Ende einer Kommunikation anzeigt.

Startbedingung
Stoppbedingung

o 1\ |/ \

Abbildung 2.8: Start- und Stoppbedingungen im 12C-Protokoll [10]

J
§
ﬁ
:

.

In der Abbildung 2.9 wird ein vollstandiger I2C-Kommunikationszyklus gezeigt, unterteilt in
zwei Teile. Im ersten Teil sendet der Master die Bausteinadresse (im Beispiel x35), gefolgt von
einem Lese- oder Schreibbit. Nach dem Erhalt der Adresse und des R/W-Bits von den Slaves
senden diese eine Bestitigung, das sogenannte Acknowledge, zuriick an den Master. Der zweite
Teil zeigt die eigentliche Dateniibertragung, wobei im Beispiel der Slave den Wert 0xA5 an den

Master sendet, gefolgt von einer weiteren Bestitigung durch den Master.

Zusammenfassend bietet [2C/TWI als serielle Schnittstelle in der Kommunikation von Anzei-
gegerdten eine Reihe von Vorteilen, darunter die Reduzierung des Verkabelungsaufwands, die
Moglichkeit, mehrere Gerite iiber nur zwei Leitungen zu verbinden, und die Unterstiitzung von
Master- und Slave-Konfigurationen. Diese Eigenschaften machen I12C/TWI zu einer idealen Wahl

fiir die effiziente und zuverldssige Kommunikation in Anzeigegeriten.

2.3.2 Auswahl des Displays mit 12C Schnittstelle

Das ausgewihlte LCD-Display, das HD44780 1602A mit 12C-Schnittstelle, bietet aufgrund
seiner technischen Spezifikationen eine ideale Losung fiir die Arbeit. Dieses Display weist
eine Auflosung von 16x2 auf, was die Darstellung von 16 Zeichen pro Zeile auf zwei Zeilen

ermoglicht, mit einer Sichtflache von 12 mm x 56 mm, die fiir die Anzeige von GPS-Positionsdaten

2 GRUNDLAGEN UND DESIGNENTWURF 19

12c-Ubertragung Teil |

Bestatigung
vom Slave

Start
Lesen

Bausteinadresse (Master->Slave): 0x35

SCL |"" ""

SDA

=
]

12C-Ubertragung Teil Il

(Fortsetzung des oberen Diagramms)

Bestéatigung
vom Master
Stop

Daten (Slave->Master): OxA5

SCL "“’ ""
SDA’

Abbildung 2.9: Ein vollstindiger I12C-Kommunikationszyklus (Beispiel) [10]

|
=

-)

ausreichend ist [12]. Die physische Grof3e des Displays betrdagt 80 mm x 36 mm x 12,5 mm,
was es kompakt und geeignet fiir Anwendungen mit begrenztem Platz macht [12]. Es kann mit
einer Spannung von 3,3 V bis 5 V betrieben werden, was es kompatibel mit dem Mikrocontroller
ATmega88PA macht [12]. Das Display bietet eine weifle Hintergrundbeleuchtung und einen
Blickwinkel von 180 Grad, ideal fiir verschiedene Einsatzumgebungen und garantiert gute
Lesbarkeit auch bei schlechten Lichtverhiltnissen [12]. Der geringe Stromverbrauch, insbesondere
der Hintergrundbeleuchtung mit nur 15 mA, macht das Display ideal fiir batteriebetriebene
Gerite wie GPS-Tracker [12]. Zudem verfiigt es iiber eine I2C-Schnittstelle, die eine einfache
Verbindung mit dem Mikrocontroller ATmega88PA ermdoglicht, wodurch es eine praktische Wahl
fir viele Anwendungen darstellt. Abbildung 2.10 zeigt das LCD-Display mit [2C-Schnittstelle
1602A HD44780.

Diese Eigenschaften machen das LCD-Display mit I2C-Schnittstelle 1602A HD44780 zu einer
ausgezeichneten Wahl fiir viele Projekte. Seine kompakte GroB3e, flexible Spannungsversorgung,
gute Helligkeit, niedriger Stromverbrauch und einfache Verbindung machen es ideal fiir den

Einsatz in tragbaren Geriten wie GPS-Trackern.

2 GRUNDLAGEN UND DESIGNENTWURF 20

Abbildung 2.10: LCD-Display mit 12C-Schnittstelle 1602A HD44780 [12]

2.4 SD-Karte Modul

2.4.1 Auswahl der seriellen Schnittstellen (SPI)

Das SPI (Serial Peripheral Interface) ist eine weit verbreitete synchrone serielle Datenverbindungs-
technologie, die in eingebetteten Systemen zur Kommunikation zwischen einem Mikrocontroller
(Master) und einem oder mehreren Peripheriegeriten (Slaves) wie SD-Karten und Sensoren
genutzt wird [3], [10]. Die Master-Slave-Architektur des SPI-Netzwerks vereinfacht durch eine
klare Rollenverteilung das Design und die Implementierung von Systemen. SPI kennzeichnet
sich durch den Einsatz separater Datenleitungen fiir die Kommunikation: MOSI (Master Out,
Slave In) fiir die Dateniibertragung vom Master zum Slave und MISO (Master In, Slave Out) fiir
die Dateniibertragung vom Slave zum Master [3], [10]. Zusétzlich wird eine Taktleitung (SCK)
zur Synchronisierung und eine /SS-Leitung (Slave Select) zur Auswahl des kommunizierenden

Slaves verwendet [3], [10].

Die taktgesteuerte Dateniibertragung ermoglicht eine prézise Steuerung des Datenflusses, indem
Daten entweder auf der steigenden oder fallenden Taktflanke iibernommen werden. Die SPI-
Kommunikation zeichnet sich durch konfigurierbare Parameter aus, wie die Auswahl der
Dateniibertragungsreihenfolge (MSB-first oder LSB-first) und der aktiven Taktflanke, was eine
flexible Anpassung an spezifische Anforderungen ermoglicht [3], [10]. Dank der Skalierbarkeit des
SPI kann das System leicht um zusétzliche Slaves erweitert werden, entweder durch Kaskadierung

oder durch eine Sternverbindung, was die Integration mehrerer Gerite vereinfacht.

2 GRUNDLAGEN UND DESIGNENTWURF 21

Wie in Abbildung 2.11 dargestellt, besteht die SPI-Verbindungsstruktur zwischen einem Master
und einem Slave aus vier Hauptleitungen. In der SPI-Verbindungsstruktur, die aus vier Haupt-
leitungen besteht, libertriagt der Master Daten zum Slave iiber die MOSI-Leitung, wihrend der
Slave tiber die MISO-Leitung Daten zum Master sendet. Das SCK-Signal, generiert vom Master,
dient der Synchronisierung der Dateniibertragung, und das /SS-Signal ermdglicht die Auswahl
des aktiven Slaves fiir die Kommunikation. Diese klar definierten Leitungen und Signale tragen

zur Effizienz und Zuverlassigkeit der SPI-basierten Datenkommunikation bei.

|
| Master | Slave |
| | <MSO__| i
| | ! J |
j \—» Schieberegister —&Mm—» Schieberegister |
| i 4 |
- . SCK . :
| — > |
! Takterzeugung | | | :
| ! 1 |
| | /88 | |
| Slaveauswabhl | >] |
e e J e e |

Abbildung 2.11: SPI-Verbindungsstruktur zwischen einem Master und einem Slave [10]

Der Signalverlauf, wie in Abbildung 2.12 gezeigt, verdeutlicht das Timing der Dateniibertragung.
Der Ruhezustand des Taktsignals (SCK) ist typischerweise auf 0 gesetzt, und die Dateniibernahme
erfolgt mit der ersten aktiven Flanke des Taktsignals. Die Darstellung zeigt, wie die Datenbits

auf MOSI und MISO mit den Taktsignalen synchronisiert werden.

sek [L)L L1
MISO X T XX

MOS| XX A A

Abbildung 2.12: Signalverlauf der SPI-Dateniibertragung [10]

2 GRUNDLAGEN UND DESIGNENTWURF 22

Die Entscheidung, das SPI (Serial Peripheral Interface) fiir die Kommunikation mit SD-
Kartenmodulen zu nutzen, griindet auf einer Reihe von Vorteilen, die dieses Protokoll bietet.
Die Geschwindigkeit der Dateniibertragung iiber SPI ist im Vergleich zu anderen seriellen
Schnittstellen hoher, was fiir Anwendungen, die eine schnelle Dateniibertragung erfordern,
entscheidend ist (wie es bei SD-Karten der Fall ist). Die einfache Integration in die Systemar-
chitektur ist ein weiterer wichtiger Faktor. Die meisten Mikrocontroller, darunter auch die der
AVR-Familie, unterstiitzen das SPI-Protokoll nativ, was den Entwicklungsprozess vereinfacht

und die Notwendigkeit zusitzlicher Hardware reduziert.

SPI zeichnet sich zudem durch seine Effizienz aus, da es im Vergleich zu parallelen Schnittstellen
weniger Leitungen benotigt. Dies fiihrt zu einer vereinfachten und kostengiinstigeren Hardwa-
rekonfiguration, die besonders in Systemen mit begrenztem Platzangebot vorteilhaft ist. Die
Flexibilitdat von SPI, mehrere Gerite iiber denselben Bus steuern zu kdnnen, ermoglicht eine
effiziente Nutzung verschiedener Peripheriegerite innerhalb eines Systems. Diese Fihigkeit zur
gleichzeitigen Anbindung mehrerer Gerite ist in eingebetteten Systemen, wo die Integration

verschiedenartiger Funktionalititen auf engem Raum erforderlich ist, besonders wertvoll.

Zusammenfassend lisst sich sagen, dass das SPI-Protokoll aufgrund seiner hohen Ubertragungs-
geschwindigkeit, der einfachen Implementierung, der Skalierbarkeit und der effizienten Nutzung
der Systemressourcen fiir die Kommunikation mit SD-Kartenmodulen in eingebetteten Systemen

eine ideale Wahl darstellt.

2.4.2 Grundlegende Begriffe von SD-Karte

Die SD-Karte (Secure Digital Card) ist ein weit verbreitetes Speichermedium, das in einer
Vielzahl von elektronischen Geriten verwendet wird, wie z.B. Digitalkameras, Mobiltelefonen
und Computern. Diese Karten nutzen den NAND-Flash-Speicher, eine Art von nichtfliichtigem
Speicher, der seine Daten auch ohne Stromversorgung behélt [13]. Die Funktionsweise von
SD-Karten basiert auf der Speicherung von Daten in Form von elektrischen Ladungen, die
in den Speicherzellen des Flash-Chips gespeichert werden. Die Ladungen werden durch das
Anlegen einer Spannung an die Speicherzellen erzeugt und kdnnen in zwei Zustinden gespeichert
werden, die als logische 0 und logische 1 bezeichnet werden. Die Speicherzellen sind in Blocken
organisiert, die wiederum in Sektoren unterteilt sind, um die Daten effizient zu verwalten und zu

lesen [14].

2 GRUNDLAGEN UND DESIGNENTWURF 23

Eine der Schliisselfunktionen von SD-Karten ist ihre Fihigkeit, Daten iiber die Wear-Leveling-
Technik zu speichern und zu verwalten. Diese Technik verteilt die Schreibzugriffe gleichmifBig
tiber den Speicherchip, um die Lebensdauer der Karte zu verldngern [13]. Da jeder Bereich des
Flash-Chips nur eine begrenzte Anzahl von Schreibzyklen aushilt, ist diese Technik entscheidend,

um eine vorzeitige Abnutzung zu vermeiden.

SD-Karten variieren primadr in Speicherkapazitit und Geschwindigkeit und lassen sich in drei
Hauptkategorien einteilen: SD (Secure Digital), SDHC (Secure Digital High Capacity) und
SDXC (Secure Digital eXtended Capacity), die jeweils unterschiedliche Speichergroflen und

Dateisysteme unterstiitzen [14].

SD-Karten sind die Grundform dieser Technologie und bieten Speicherkapazitdten von bis
zu 2 GB [14]. Sie arbeiten mit den Dateisystemen FAT12 oder FAT16, welche fiir kleinere
Datenvolumen konzipiert wurden. Diese Karten stellen eine gute Wahl fiir dltere oder weniger

anspruchsvolle Gerite dar, bei denen keine groen Datenmengen gespeichert werden miissen.

SDHC-Karten représentieren die ndchste Generation mit Speicherkapazititen von 4 GB bis 32 GB
[14]. Sie nutzen das FAT32-Dateisystem, das effizienter mit groBeren Dateien und Kapazititen
umgeht. SDHC-Karten eignen sich fiir Nutzer, die mehr Speicherplatz benotigen, etwa fiir

hochauflosende Fotos oder ldngere Videos.

SDXC-Karten sind die fortschrittlichste Kategorie mit Speicherkapazititen von iiber 32 GB bis
zu 2 TB [14]. Sie verwenden das exFAT-Dateisystem, das fiir seine Fahigkeit, sehr grole Dateien
und Speicher zu verwalten, entwickelt wurde. Diese Karten sind ideal fiir professionelle Anwen-
dungen, die extrem grofle Datenmengen erfordern, wie z.B. hochauflosendes Videoaufzeichnen,

ausgedehnte Fotosammlungen und umfangreiche Datenspeicherung.

Fiir die meisten Anwendungen, einschlie8lich GPS-Tracker, sind SD-Karten mit 2GB Spei-
cherplatz ausreichend. Diese SD-Karte ist mit einem 9-poligen Anschluss ausgestattet, der die
Verbindung mit einem Mikrocontroller iiber die serielle Schnittstelle (SPI) ermdglicht. Die
Tabelle 2.2 zeigt die Belegung der Kontakte einer SD-Karte und deren Anschluss an einen

Mikrocontroller im SPI-Modus.

2 GRUNDLAGEN UND DESIGNENTWURF

Tabelle 2.2: Belegung der Kontakte einer SD-Karte und deren Anschluss an einen
Mikrocontroller im SPI-Modus [13]

SD-Karten-Pin | Funktion Mikrocontroller-Anschluss
Nicht verwendet im

DAT2 Nicht verbunden
SPI-Modus

DAT3/SS Slave Select im SPI-Modus CS (Chip Select Pin)

CMD / MOSI Master Out Slave In MOSI (Master Out Slave In)

GND Erdung GND (Ground)

VCC Versorgungsspannung 5V Versorgung

CLK/SCK Taktleitung im SPI-Modus SCK (Serial Clock)
Master In Slave Out im

DATO / MISO MISO (Master In Slave Out)
SPI-Modus
Nicht verwendet im

DAT1 Nicht verbunden
SPI-Modus

3 UMSETZUNG UND SOFTWAREENTWICKLUNG 25

3 Umsetzung und Softwareentwicklung

In diesem Abschnitt wird die Umsetzung des GPS-Tracking-Systems beschrieben. Zunéchst wird
die Hardware-Implementierung des Systems erldutert. AnschlieBend wird die Softwareentwick-
lung fiir den Mikrocontroller beschrieben. Softwareentwicklung umfasst Softwaredesign fiir
Mikrocontroller und Softwaredesign fiir PC-Anwendung. Die Software fiir Mikrocontroller wird
auf dem ATmega88PA Mikrocontroller ausgefiihrt und die Software fiir PC-Anwendung wird auf
einem Windows 10/11 PC/Laptop ausgefiihrt. Die Software fiir Mikrocontroller und die Software
fiir PC-Anwendung kommunizieren iiber die UART-Schnittstelle (RS232).

3.1 Bauteilverbindung

Die Hardware-Implementierung des GPS-Tracking-Systems umfasst die Verbindung der Hard-
warekomponenten. Die Hardwarekomponenten sind der Mikrocontroller, das GPS-Modul, das
LCD-Display und die SD-Karte. Die Verbindung der Hardwarekomponenten ist in Abbildung 3.1

dargestellt.

Die Abbildung 3.2 zeigt die detaillierten Verbindungen des GPS-Moduls mit dem Mikrocontroller.
Die Verbindung erfolgt iiber die UART-Schnittstelle. TXD des GPS-Moduls ist mit RXD des
Mikrocontrollers verbunden. VCC und GND sind die Kontakte fiir die Stromversorgung. RXD
des GPS-Moduls muss nicht mit dem Mikrocontroller verbunden werden, da der Mikrocontroller

keine Daten an das GPS-Modul sendet.

In diesem speziellen Szenario wird angegeben, dass der PC keine Daten an den Mikrocontroller
sendet und das GPS-Modul ebenfalls nur Daten an den Mikrocontroller sendet. Dies vermeidet
Konflikte, da es keinen Moment gibt, in dem der Mikrocontroller versuchen wiirde, gleichzeitig
Daten von beiden Geriten zu empfangen. Abbildung 3.3 zeigt die Kommunikation zwischen PC,

Mikrocontroller und GPS-Modul.

AnschlieBend wird die Verbindung des LCD-Displays mit dem Mikrocontroller in Abbildung 3.4
dargestellt. Die Verbindung erfolgt tiber das I2C-Schnittstelle. SDA und SCL sind die Kontakte

fiir die I2C-Kommunikation. VCC und GND sind die Kontakte fiir die Stromversorgung.

3 UMSETZUNG UND SOFTWAREENTWICKLUNG 26

Abbildung 3.1: Verbindung der Hardwarekomponenten

Die Abbildung 3.5 zeigt die detaillierten Verbindungen der SD-Karte mit dem Mikrocontroller.
Die Verbindung erfolgt iiber die SPI-Schnittstelle. MOSI, MISO, SCK und CS sind die Kontakte
fiir die SPI-Kommunikation. VCC und GND sind die Kontakte fiir die Stromversorgung.

Zuletzt wird die Verbindung der Taster mit dem Mikrocontroller in Abbildung 3.6 dargestellt.
Die Taster sind iiber die Interrupts INTO und INT1 mit dem Mikrocontroller verbunden. INTO
und INT1 sind die Kontakte fiir die Interrupts.

3 UMSETZUNG UND SOFTWAREENTWICKLUNG 27

CD-PALLLLO

A UM > v oo ™~ @0 O

Nd-vdggebauwly

Abbildung 3.2: Verbindung des GPS-Moduls mit dem Mikrocontroller

O OC @0 N~ B WM T M MU A

Nd-vdegebauwLly

CD-PALL1LDO

GPS-Modul Mikrocontroller Rechner

Abbildung 3.3: UART-Kommunikation zwischen PC, Mikrocontroller und GPS-Modul

3.2 Entwicklung der Mikrocontroller-Firmware

Die Software fiir Mikrocontroller besteht aus zwei Hauptmodi: Messmodus und Lesemodus. Im
Messmodus werden GPS-Daten empfangen und verarbeitet. Die Daten werden dann in einem
Format auf der SD-Karte gespeichert. Im Lesemodus werden Daten von der SD-Karte gelesen
und tiber UART ausgegeben. Der Lesemodus liest die Daten bis zur zuletzt gespeicherten Adresse.

Listing 5.1 in Anhang zeigt den vollstandigen Quellcode der Mikrocontroller-Firmware.

Zur Benutzerinteraktion und Feedback nutzt die Firmware externe Interrupts zur Verarbeitung
der Benutzereingaben iiber Tasten. Diese Eingaben ermdglichen es dem Benutzer, zwischen dem

Mess- und dem Lesemodus zu wechseln oder die Adresse im EEPROM zuriickzusetzen. Ein LCD-

3 UMSETZUNG UND SOFTWAREENTWICKLUNG 28

SDA (PC4)
C5)
!

I ZO9TWIT

® "9

aa

Xee I .

GND

>
=
B
I
Q
[
o
o
o
p -
0
=

Abbildung 3.4: Verbindung des LCD-Displays mit dem Mikrocontroller

vcc
GND

Nd-lvdggebauw |y

Abbildung 3.5: Belegung der Kontakte einer SD-Karte und deren Anschluss an einen
Mikrocontroller im SPI-Modus

Display wird verwendet, um dem Benutzer Feedback zu geben, was die Benutzerfreundlichkeit

erhoht.

Eine wichtige Funktion der Firmware ist die Speicherung der letzten Schreibadresse im EEPROM.
Dies ermoglicht es dem System, nach einem Neustart nahtlos fortzufahren und gewihrleistet eine

kontinuierliche Datenaufzeichnung ohne Datenverlust.

Die Firmware beinhaltet auBerdem Mechanismen zur Fehlerbehandlung, insbesondere bei der
Initialisierung der SD-Karte und beim Empfang der GPS-Daten. Fehlermeldungen werden auf

dem LCD-Display angezeigt, um den Benutzer iiber den Status zu informieren.

3 UMSETZUNG UND SOFTWAREENTWICKLUNG 29

>
_]
=
M
L
=
0=
0o
>
1
0
(=

Taster 2
Abbildung 3.6: Verbindung der Taster mit dem Mikrocontroller

Die Interrupt Service Routinen (ISRs) spielen eine entscheidende Rolle bei der Interaktion des
Benutzers mit dem System. Durch die Verwendung von Hardware-Interrupts ermoglichen diese
Routinen eine sofortige Reaktion auf Benutzereingaben. Die ISR(INTO_vect) ist zustindig
fir die Behandlung von Tastendriicken, die den Messmodus betreffen, und implementiert
eine Entprellung, um sicherzustellen, dass Tastendriicke korrekt interpretiert werden. Die
ISR(INT1_vect) behandelt Tastendriicke, die den Lesemodus steuern, und ermdglicht es
dem Benutzer, zwischen dem Lesemodus und dem normalen Betriebsmodus zu wechseln. In
beiden Routinen wird eine Verzogerung von 20 Millisekunden eingefiihrt, um das Prellen
der Tasten zu minimieren. Dies ist ein wichtiger Aspekt, da das Prellen zu falschen oder
mehrfachen Aktivierungen des Interrupts fiihren kann, was wiederum die Systemleistung und

Benutzererfahrung beeintrachtigen konnte.

AuBlerdem verwendet das Mikrocontroller-Firmware mehrere extern Bibliotheken, um die
Funktionalitit zu erweitern und die Entwicklung zu erleichtern. Die Uart.h Bibliothek wird
verwendet, um die UART-Kommunikation zu ermoglichen. Die 1cd . h Bibliothek wird verwendet,
um die LCD-Operationen zu ermdglichen. Die spi.h Bibliothek wird verwendet, um die
SPI-Kommunikation zu ermoglichen. Die sd_card.h Bibliothek wird verwendet, um die SD-
Karten-Operationen zu ermdoglichen. Bibliothek aufgrund der iiberméfBigen Lange des Quellcodes
nicht im Anhang aufgefiihrt. Trotzdem sind einige wichtige Funktionen von Bibliotheken in den

folgenden Unterabschnitten beschrieben.

3 UMSETZUNG UND SOFTWAREENTWICKLUNG 30

3.2.1 Beschreibung von initializeSystem()

Im Folgenden wird die Funktionsweise der initializeSystem() Funktion detailliert beschrie-
ben. Diese Funktion spielt eine zentrale Rolle bei der Vorbereitung des Systems, indem sie
verschiedene Hardwarekomponenten und Schnittstellen initialisiert und konfiguriert, um deren
reibungslosen Betrieb zu gewihrleisten. Die meisten Funktionen werden durch Aufrufen von
externen Bibliotheken realisiert. Die Struktur und die spezifischen Aktionen, die wihrend der

Initialisierung durchgefiihrt werden, sind in Abbildung 3.7 visualisiert.

. A

[UART initialisieren |
\ LCD initialisieren "\
\ SPI initialisieren |

| Letzte Adresse aus EEPROM lesen \

v

nicht erfolgreich ~ SD-Karte initialisieren? . erfolgreich

P a# nein
| Fehlermeldung auf UART ausgeben | \ SEICLECRr =5 0

] Kurze Verzogerung \] Kurze Verzogerung \

\ Keine SD-Karte Meldung auf LCD |

lﬂ Messung starten durch Taste 1 auf LCD \ \ Weiter messen durch Taste 1 auf LCD \

P S

v

\ Taste 1-Pin als Eingang setzen und Pull-Up aktivieren .‘|

v

\ Taste 2-Pin als Eingang setzen und Pull-Up aktivieren \

v

\ INTO fiir fallende Flanke von Taste 1 einstellen \

v

\ INT1 fir fallende Flanke von Taste 2 einstellen :\

v

\ Externen Interrupt O und 1 zulassen :|

B 2

\ Interrupts aktivieren |

e

Abbildung 3.7: Struktur und Funktionsweise der initializeSystem() Funktion

3 UMSETZUNG UND SOFTWAREENTWICKLUNG 31

Zeile 122-177 von Listing 5.1 in Anhang zeigt die Quellcode der initializeSystem(). Zu-
nichst wird die UART-Kommunikationsschnittstelle initialisiert, um die serielle Kommunikation
zwischen dem Mikrocontroller und externen Geriten wie PCs oder GPS-Modulen zu ermogli-
chen. Dies erfolgt durch Aufrufen der Funktion uart_init () mit spezifischen Parametern fiir
Baudrate und CPU-Frequenz. Die Baudrate wird auf 9600L festgelegt, weil das GPS-Modul mit
dieser Baudrate standardisiert. AuBerdem wird CPU-Frequenz auf 3686400L festgelegt, weil die
CPU-Frequenz des Mikrocontrollers 3.686.400 Hz betragt.

AnschlieBend erfolgt die Initialisierung des LCD-Displays, das zur Anzeige von Informationen
und Statusmeldungen dient. Die Funktion 1cd_init () bereitet das Display vor und gewihrleistet
die korrekte Darstellung der Daten. Hier wird die Anzahl der Zeilen und Spalten des Displays

festgelegt. In diesem Fall handelt es sich um ein 16x2-Zeichen-LCD-Display.

Die SPI-Schnittstelle wird konfiguriert, um die Kommunikation mit der SD-Karte zu ermog-
lichen. Durch den Aufruf von SPI_init wird der Mikrocontroller als SPI-Master festgelegt,
und die erforderlichen Ubertragungseinstellungen werden definiert. Die Geschwindigkeit der
SPI-Kommunikation wird auf SPI_FOSC_16 festgelegt, um eine schnelle und zuverldssige
Dateniibertragung zu gewihrleisten. SPI_FOSC_16 bedeutet, dass die SPI-Frequenz gleich 1/16
der CPU-Frequenz ist.

Ein wichtiger Schritt ist der EEPROM-Adresslesevorgang, bei dem die zuletzt im EEPROM
gespeicherte Adresse ausgelesen wird. Diese Adresse ist entscheidend fiir die Fortfiihrung der

Datenerfassung nach einem Neustart.

Die Initialisierung der SD-Karte wird iiberpriift, und im Fehlerfall werden entsprechende

Meldungen ausgegeben. Dies stellt sicher, dass die Datenspeicherung korrekt funktionieren kann.

Des Weiteren werden die Tasten und Interrupts konfiguriert. Die Pins fiir die Tasten werden als
Einginge mit aktivierten internen Pull-Up-Widerstinden festgelegt, und die Interrupts INTO und
INT1 werden fiir die Erkennung von Tastendriicken konfiguriert. AbschlieBend wird durch den
Befehl sei () die globale Aktivierung der Interrupts durchgefiihrt, was fiir die Reaktionsfihigkeit

des Systems auf Benutzereingaben und externe Ereignisse unerlisslich ist.

3 UMSETZUNG UND SOFTWAREENTWICKLUNG 32

Falls die Initialisierung erfolgreich war, wird eine entsprechende Meldung auf dem LCD-
Display angezeigt, um den Benutzer liber den erfolgreichen Start des Systems zu informieren.
Abbildung 3.8 zeigt das LCD-Display mit der Meldung ,,Messung starten durch Taste 1 nach
einem erfolgreichen Umschalten in den Messmodus. Diese Meldung informiert den Benutzer

dariiber, dass das System bereit ist, die Datenerfassung zu starten.

Abbildung 3.8: Display mit der Meldung Messung starten durch Taste 1

Dartiber hinaus zeigt Abbildung 3.9 das LCD-Display mit der Meldung ,,Weiter messen durch
Taste 1* nach einem erfolgreichen Umschalten in den Messmodus. Diese Meldung informiert

den Benutzer dariiber, dass das System bereit ist, die Datenerfassung fortzusetzen.

Abbildung 3.9: Display mit der Meldung Weiter messen durch Taste 1

3 UMSETZUNG UND SOFTWAREENTWICKLUNG 33

Falls bei Initialisierung keine SD-Karte gefunden wurde, wird eine entsprechende Meldung auf
dem LCD-Display angezeigt, um den Benutzer {iber den Fehler zu informieren. Abbildung 3.10
zeigt das LCD-Display mit der Meldung ,,Keine SD-Karte!* nach einem erfolglosen Initialisierung
der SD-Karte.

Abbildung 3.10: Display mit der Meldung Keine SD-Karte!

3.2.2 Beschreibung von lesenSDCard()

Die Funktion 1esenSDCard () ist speziell dafiir konzipiert, Daten von der SD-Karte zu lesen und
sie iber die UART-Schnittstelle auszugeben. Abbildung 3.11 zeigt die Struktur und Funktionsweise

dieser Funktion.

Zeile 179-226 von Listing 5.1 in Anhang zeigt die Quellcode der 1esenSDCard(). Zu Beginn
des Prozesses wird das LCD-Display geloscht und eine Nachricht (,,Lesen...”) angezeigt, um
den Benutzer iiber den Beginn des Lesevorgangs zu informieren. Die Nachricht wird durch
den Aufruf der Funktion 1cd_clear() und lcd_print() auf dem LCD-Display angezeigt.
Listing 3.1 und Listing 3.2 zeigt die Quellcode der 1cd_clear () und 1cd_print () Funktionen
von Bibliothek 1cd.c.
void lcd_clear() {
lcd_nibble_out (0x01, 0); // clear display

lcd_nibble_out (0x80, 0);

char_counter = 0;

5 }

Listing 3.1: Quellcode der 1cd_clear () Funktion von Bibliothek 1cd.c

1

5

3

3 UMSETZUNG UND SOFTWAREENTWICKLUNG 34

9

\: LCD I6schen :\

——

| Lesen... auf LCD anzeigen :\

v

\ Baudrate setzen (115200L) :\

ELesenAddr < SchreibenAddr , ,neln—¢
/

| sD-Karte lesen | | Lesen Modus deaktivieren
ja /L rfolgreich? DREIn = N
NEESEVoangicroioneiensy | Lesen Adresse zuriicksetzen |

ja/" nein 4 B\
(Joken == SD_START_TOKEN? | Fehlermeldung auf UART |
\: Daten auf UART ausgeben fiir 50 Zeichen | \ Fehlermeldung auf UART :\ [Lesen Modus auf UART ausgeben |
| S |
(: —Y
> € | Lcp 16schen |

L Kurze Verzogerung \

—

\: Lesen erfolgreich! auf LCD \

v

\j Baudrate setzen (9600L) \

|

| LesenAdresse aktualisieren

Y
A

N
A

Abbildung 3.11: Struktur und Funktionsweise der 1esenSDCard() Funktion

void lcd_print_str(char *str) {
while (*str != 0){
if(char_counter == LCD_WIDTH) lcd_nibble_out (LCD_ADDR_LINE2,0);
if(char_counter == (LCD_WIDTH*2)){
lcd_nibble_out (LCD_ADDR_LINE1,0);
char_counter = 0;
}
char_counter++;

lcd_nibble_out (*str++, 1);

Listing 3.2: Quellcode der 1cd_print () Funktion von Bibliothek 1cd.c

3 UMSETZUNG UND SOFTWAREENTWICKLUNG 35

AnschlieBend wird die Baudrate fiir die UART-Kommunikation auf 115200L gesetzt, um eine
schnellere Dateniibertragung zu ermoglichen. Dies erfolgt durch den Aufruf der Funktion
setBaudRate() mit dem entsprechenden Parameter. Listing 3.3 zeigt die Quellcode der

setBaudRate () Funktion.

void setBaudRate(unsigned long baud) {

uart_init (UART_BAUD_SELECT (baud, F_CPU));

3

1

Listing 3.3: Quellcode der setBaudRate () Funktion

Ein wesentlicher Schritt ist die Uberpriifung der Lese- und Schreibadressen, um sicherzustellen,
dass nur die Daten gelesen werden, die bereits geschrieben wurden. Die Funktion priift, ob die
Adresse zum Lesen (LesenAddr) kleiner als die Adresse zum Schreiben (SchreibenAddr) ist.

Dies verhindert das Lesen von unbeschriebenen Bereichen auf der SD-Karte.

Der eigentliche Lesevorgang wird durch die Funktion SD_readSingleBlock() von Bibliothek
sd_card.c durchgefiihrt, die einen Block von der SD-Karte liest und die Daten in einem
Puffer speichert. Die Ergebnisse des Lesevorgangs werden in einem Puffer (bufl) gespeichert.
Die Funktion gibt auch einen Statuscode (res1[0]) und einen Token (tokenl) zuriick, der
den Beginn der Daten markiert. Listing 3.4 zeigt die Quellcode der SD_readSingleBlock()

Funktion von Bibliothek sd_card.c.

/% s eSS SR S R R R R R R R R
Read single 512 byte block

token = OxFE - Successful read

token = 0x0X - Data error

token = OxFF - timeout

7 uint8_t SD_writeSingleBlock(uint32_t addr, uint8_t *buf, uint8_t *token)

8

{
uintl6_t readAttempts;

uint8_t resl, read;

// set token to none

*token = OxFF;

// assert chip select

SPI_transfer (0xFF);

40

41

46

47

48

49

3 UMSETZUNG UND SOFTWAREENTWICKLUNG

36

CS_ENABLEQ) ;
SPI_transfer (0xFF);

// send CMD24
SD_command (CMD24, addr, CMD24_CRC);

// read response

resl = SD_readResl1();

// if no error
if(resl == SD_READY)
{
// send start token

SPI_transfer (SD_START_TOKEN) ;

// write buffer to card

for(uintl6_t i = ®; i < SD_BLOCK_LEN; i++) SPI_transfer(buf[i]);

// wait for a response (timeout = 250ms)

readAttempts = 0;

while (++readAttempts != SD_MAX WRITE_ATTEMPTS)
if((read = SPI_transfer(0xFF)) != O0xFF) { *token
3
// if data accepted
if((read & 0x1F) == 0x05)
{
// set token to data accepted
*token = 0x05;
// wait for write to finish (timeout = 250ms)
readAttempts = 0;
while (SPI_transfer (0xFF) == 0x00)
if(++readAttempts == SD_MAX_WRITE_ATTEMPTS) {
; break; }
3
}

// deassert chip select

O0xFF;

*token

break;

0x00

59

3 UMSETZUNG UND SOFTWAREENTWICKLUNG 37

SPI_transfer (0xFF);
CS_DISABLEQ);
SPI_transfer (0xFF);

return resl;

3
Listing 3.4: Quellcode der SD_readSingleBlock() Funktion von Bibliothek sd_card.c

Wenn der Lesevorgang erfolgreich war (indiziert durch res1[0] == 0x00) und der korrekte
Start-Token empfangen wurde, werden die gelesenen Daten Zeichen fiir Zeichen iiber die
UART-Schnittstelle ausgegeben. Nach erfolgreichem Lesen eines Blocks wird die Leseadresse
(LesenAddr) um die GroBe eines Sektors (512 KB) erhoht, um beim nichsten Lesevorgang den

nichsten Block zu lesen. Dieser Schritt ist essentiell fiir die kontinuierliche Datenverarbeitung.

Der Lesevorgang endet, sobald die Leseadresse die Schreibadresse erreicht oder tliberschreitet,
worauthin der Lesemodus beendet und die Leseadresse zuriickgesetzt wird. AbschlieBend wird
eine abschlieBende Meldung auf dem LCD-Display angezeigt und die Baudrate wird auf den
Standardwert (9600L) fiir das GPS-Modul zuriickgesetzt, um die Kompatibilitdt mit anderen
Modulen zu gewihrleisten. Abbildung 3.12 zeigt das LCD-Display mit der Meldung ,,Lesen...*
nach einem erfolgreichen Umschalten in den Lesemodus. Diese Meldung informiert den Benutzer

dariiber, dass die Lesenvorgang jetzt durchgefiihrt wird.

‘."' ! i ér 4 '. '\~ 1 2 ‘l=‘~ 1
g o]) .a,;" oL Pk A \
it f i s i ! L

i {7 AT L i i { it \ i
by i LA i G i ¥ \ \
T P LT R AV S)
f Lk A | | PR AL ol BeVE dl 8 A i {
T sl EHRARE AR RTRAR R

g“ﬁ ; (i
Abbildung 3.12: Display mit der Meldung Lesen. . .

f ';ﬂ/,‘ "/"1«
(e ’ i
{ iy

itid

Falls alle Daten gelesen wurden, wird eine entsprechende Meldung auf dem LCD-Display ange-

zeigt, um den Benutzer tiber den Abschluss des Lesevorgangs zu informieren. Abbildung 3.13 zeigt

3 UMSETZUNG UND SOFTWAREENTWICKLUNG 38

'66

das LCD-Display mit der Meldung ,,.Lesen erfolgreich!* nach einem erfolgreichen Lesevorgang.

L t" 0 It / §

,/tf Jil f, iy il [i [Tl G h: \\
| HEOEY I e ¥l ryy I L 0 1 \

I h | i .’; il b 3' i R L)

g e L s O AR . \

Abbildung 3.13: Display mit der Meldung Lesen erfolgreich!

3.2.3 Beschreibung von abholenGPSDaten()

Die Funktion abholenGPSDaten() ist fiir das Abholen, Analysieren und Verarbeiten der GPS-
Daten verantwortlich, die von einem angeschlossenen GPS-Modul iiber die UART-Schnittstelle

gesendet werden. Abbildung 3.14 zeigt die Struktur und Funktionsweise dieser Funktion.

Zeile 228-297 von Listing 5.1 in Anhang zeigt die Quellcode der abholenGPSDaten(). Zu
Beginn wird mit der Funktion uart_available() gepriift, ob GPS-Daten iiber die UART-
Schnittstelle verfiigbar sind. Listing 3.5 zeigt die Quellcode der uart0@_available () Funktion
von Bibliothek uart.c.

| / B R R A o S S A A S A S A S S Sk A i S A Sk A ik S S Sk A Tk S i i S S Rk O

> Function: uartO_available ()

3 Purpose: Determine the number of bytes waiting in the receive buffer

4 Input: None

s Returns: Integer number of bytes in the receive buffer

R R R R R R R R R R R R

7 uintl6_t uart®_available(void)

s {

9 return (UART_RXO_BUFFER_SIZE + UART_RxHead - UART_RxTail) &
UART_RXO_BUFFER_MASK;

0}

Listing 3.5: Quellcode der uart0_available() Funktion von Bibliothek uart.c

39

3 UMSETZUNG UND SOFTWAREENTWICKLUNG

| 2nunz sme3sjeubis-sdo usp az3es |

P S

[a1 4ne ijeubis-sdo uisy |

P S

| usyasoi @ |

fualopan [eublS-Sdo

(0 = xapures6us |

P

[0 =xapurauy |
7\ (3ulp)aurisdousyageIan |

.

,‘ 0\ = [xapui~auljauy |

LE == xapui auy

("0 = xepuiestub |

.

| ++xapuiauy |
\

1

o
L i=<x

EN

[2= xapuraunauy |

el

{6 > xapuraui

\ - ~ - ~ - N

- B\ Ve B @ R g > \ ﬁ
| ++xapui"ebbub | | ++xapuiebbub | | ++xapuiebbub | | ++xapuiebbub | | ++xapui"ebbub | | ++xapuiTebbub | | ++xapurebbub |
\ J \ J N / N J J \ \ J

!

of 1 1 of 1 1 o

[el el efl el
s‘mmocmVAl\... =5 == xapui e66ub Vo==2 == x3) :..mg._QVA[\A ==2 == xapui e66Ub Di==2 ==x3 EISEaVArA. , ==2 == x3) :..mg.aVAIA, T == xapui e6bub $.==> == xapui eBbub
P! Q NS 8 P! I(NS5 P 9, NS P VA|AU NSE P! N, b e 4 P 9, 591 P! VA* 3% 0 P!

A

—
| (), uen =>ueyd |

— 5 —

41eqbnyuan ua3eq-sdo

9

1 0 = xapurebbub 37 giuin oneys ,7

9

7‘ uaJ3Isifeniul 0 = X3pul_aul| 3 8N dness |

-

,‘ uaJaisijeniul [0S)3 Jeyd dnels |
N J

e

| uasais

Struktur und Funktionsweise der abholenGPSDaten() Funktion

Abbildung 3.14

3 UMSETZUNG UND SOFTWAREENTWICKLUNG 40

Sind Daten vorhanden, so werden sie sequenziell abgerufen, wobei ein besonderes Augenmerk
auf der Identifikation der GNGG A- Zeile liegt. Diese Zeilen enthalten wichtige Informationen
wie die aktuelle Zeit, Breiten- und Langengrade sowie die Fix-Qualitit und sind daher fiir
die Datenerfassung von besonderem Interesse. Nach erfolgreicher Identifikation der GNGG A-
Zeile werden die nachfolgenden Zeichen in einem Array gespeichert, bis die gesamte Zeile
vollstdandig ist. Dies wird durch eine Schleife realisiert, die die eingehenden Zeichen bis zu einer
bestimmten Linge (37 Zeichen) speichert. Sobald eine vollstindige GNGG A- Zeile empfangen
wurde, wird diese an die Funktion verarbeitenGPSLine () im Unterabschnitt 3.2.4 libergeben.
Diese Funktion ist dafiir zustindig, die empfangenen Daten zu analysieren und fiir die weitere

Verwendung im System aufzubereiten.

Nach Abschluss der Verarbeitung oder bei Auftreten eines Fehlers werden der Zeilenindex und der
GNGGA-Index zuriickgesetzt. Dieser Schritt stellt sicher, dass das System fiir die Verarbeitung

der nichsten Zeile bereit ist, und ermoglicht eine kontinuierliche und effiziente Datenerfassung.

3.2.4 Beschreibung von verarbeitenGPSLine()

Die Funktion verarbeitenGPSLine () verarbeitet eine GNGGA- Zeile, extrahiert daraus
wichtige Informationen wie Breiten- und Lingengrad, Zeit und Fix-Status, und bereitet diese
Daten zur Anzeige und Speicherung vor. Abbildung 3.15 zeigt die Struktur und Funktionsweise

dieser Funktion.

Zeile 299-415 von Listing 5.1 in Anhang zeigt die Quellcode der verarbeitenGPSLine().
Die Funktion beginnt mit der Analyse der iibergebenen Zeichenkette, die eine GNGG A- Zeile
darstellt. Eine vollstindige GNGG A- Zeile enthilt 15 Segmente, die durch Kommas getrennt
sind. Listing 3.6 zeigt ein Beispiel einer GNG G A- Zeile. Diese Zeile bedeutet, dass die aktuelle
Zeit 16:50:06.000 ist, die Breitengrad 22 Grad 41 Minuten 91.07 Sekunden Nord, der Langengrad
120 Grad 17 Minuten 23.83 Sekunden Ost, der GPS-Fix-Status 1 ist, die Anzahl der Satelliten 14
ist, die HDOP 0.79 ist, die Hohe 22.6 Meter ist und die Geoidenhohe 18.5 Meter ist.

I $GNGGA,165006.000,2241.9107,N,12017.2383,E,1,14,0.79,22.6,M,18.5,M, ,%42

Listing 3.6: Beispiel einer GNGG A- Zeile

3 UMSETZUNG UND SOFTWAREENTWICKLUNG 41

X4

\‘ Zeile aufteilen und Zeit extrahieren |

v

\' Breitengrad aus Zeile extrahieren |

v

\: Langengrad aus Zeile extrahieren :\

2

\: Fix Uberprifen “\

¢—J—.\F|x ==.o/ ﬁ

\ GPS-Signalstatus auf verloren setzen :\ \ GPS-Signalstatus auf gefunden setzen :\

#
\: Breitengrad und Langengrad formatieren |

v

\ LCD I6schen “\
\; Kurze Verzogerung \
\ Breitengrad und Langengrad auf LCD anzeigen |

v

| Formatierte Zeit, Breitengrad und Langengrad in Puffer schreiben :\

v

\ Prifen, ob Schreibenadresse die GesamtgroRe uberschreitet :\

v

’.\/SchreibenAddr >= Gesamtbytes >

v
\‘ Schreiben Adresse zuriicksetzen |
[Adresse im EEPROM aktualisieren |

®

Abbildung 3.15: Struktur und Funktionsweise der verarbeitenGPSLine () Funktion

Mit Hilfe der Funktion strtok() wird diese Zeile in einzelne Segmente zerlegt, indem sie an
Kommas getrennt wird. Anschlieend wird die Zeitinformation extrahiert, indem die ersten sechs
Zeichen der Zeile verwendet werden, um Stunden, Minuten und Sekunden zu bestimmen und in

einem Zeitformat zusammenzufassen.

Fiir die Berechnung von Breiten- und Langengrad werden die Grad- und Minutenangaben aus
der GNGG A- Zeile in ein Dezimalformat konvertiert. Dieser Schritt ist entscheidend, um die
Daten in einem Format zu speichern, das fiir die weitere Verarbeitung und Anzeige geeignet ist.

Die Funktion atof() wird verwendet, um die Grad- und Minutenangaben in Dezimalzahlen

3 UMSETZUNG UND SOFTWAREENTWICKLUNG 42

umzuwandeln. Die Umrechnung von Breiten- und Langengrad ist bereits im Unterabschnitt 2.2.2
detailliert beschrieben. Zusitzlich werden die Zeichen fiir Norden/Siiden und Osten/Westen

extrahiert, um die geografische Lage genauer zu bestimmen.

Die Funktion priift auch den GPS-Fix-Status, um sicherzustellen, dass ein giiltiges GPS-Signal
vorliegt. Bei einem fehlenden GPS-Fix wird der Signalstatus entsprechend gesetzt, und die
Funktion endet ohne weitere Datenverarbeitung. Listing 3.7 zeigt die Quellcode zur Uberpriifung
des GPS-Fix-Status. Wenn der Fix 0 ist, bedeutet dies, dass es keine giiltigen GPS-Daten gibt (0
= kein Fix, 1 = Fix).

if (fix == 0) {

gpsSignallLost = true; // GPS-Signalstatus auf verloren setzen

return; // Zurick

, gpsSignallLost = false;

Listing 3.7: Quellcode zur Uberpriifung des GPS-Fix-Status

Sollte das GPS-Signal verloren gehen, wird eine entsprechende Warnmeldung auf dem LCD-
Display angezeigt, um den Benutzer iiber diesen Zustand zu informieren. Abbildung 3.16 zeigt

das LCD-Display mit der Meldung ,,Kein GPS-Signal!*“ nach einem Verlust des GPS-Signals.

Abbildung 3.16: Display mit der Meldung Kein GPS-Signal!

Nach der erfolgreichen Verarbeitung werden die GPS-Daten auf einem LCD-Display dargestellt
und in einem Puffer fiir die spétere Speicherung auf einer SD-Karte vorbereitet. Um die Daten

auf dem LCD-Display besser darzustellen, werden die Daten in einem bestimmten Format

3 UMSETZUNG UND SOFTWAREENTWICKLUNG 43

zusammengefasst und anschlieBend mit der Funktion lcd_setcursor() benutzt, um die
Daten auf dem LCD-Display in zwei Zeilen anzuzeigen. Listing 3.8 zeigt die Quellcode der

lcd_setcursor () Funktion von Bibliothek 1cd. c.

1 void lcd_setcursor(uint8_t col, uint8_t row) {

> uint8_t address;

3

4 /* compute the address according to the LCD layout */

s switch (row) {

6 case 0: address = 0x00 + col; break; // first line
7 case 1: address = 0x40 + col; break; // second line
8 // add more cases if your LCD has more lines

9 default: return; // invalid row

2 /* set the address counter to this address */
3 1lcd_nibble_out (0x80 | address, 0);
14}

Listing 3.8: Quellcode der 1cd_setcursor () Funktion von Bibliothek 1cd.c

Die aufbereiteten Daten werden schlielich auf das LCD-Display ausgegeben. Abbildung 3.17
zeigt das LCD-Display mit den GPS-Daten nach einer erfolgreichen Verarbeitung. Diese
Darstellung informiert den Benutzer tiber die aktuellen GPS-Daten und ermoglicht eine visuelle

Uberpriifung der Daten.

Abbildung 3.17: Display mit den GPS-Daten

3 UMSETZUNG UND SOFTWAREENTWICKLUNG 44

Die gespeicherten Daten umfassen die aktuelle Zeit, den Breiten- und Langengrad sowie die
entsprechenden Himmelsrichtungen. Der eigentliche Speichervorgang wird durch die Funktion
speichernSDCard() von Bibliothek sd_card. c durchgefiihrt. Listing 3.9 zeigt die Quellcode
der speichernSDCard() Funktion von Bibliothek sd_card.c.

R R R R R R R R R R R

Write data to SD card

;s Write single 512 byte block

G

token = 0x00 - busy timeout
token = 0x05 - data accepted

token = OxFF - response timeout

uint8_t SD_writeSingleBlock(uint32_t addr, uint8_t *buf, uint8_t *token)

{
uintl6_t readAttempts;

uint8_t resl, read;

3 // set token to none

*token = OxFF;

// assert chip select
SPI_transfer (0xFF);
CS_ENABLE(Q);
SPI_transfer (0xFF);

// send CMD24

> SD_command (CMD24, addr, CMD24_CRC);

// read response

resl = SD_readResl1();

// if no error
if(resl == SD_READY)
{
// send start token

SPI_transfer (SD_START_TOKEN) ;

// write buffer to card

for(uintl6é_t i = ®; i < SD_BLOCK_LEN; i++) SPI_transfer(buf[i]);

N

9

60

3 UMSETZUNG UND SOFTWAREENTWICKLUNG 45

// wait for a response (timeout = 250ms)
readAttempts = 0;
while (++readAttempts != SD_MAX_WRITE_ATTEMPTS)
if((read = SPI_transfer (0xFF)) != O0xFF) { *token = OxFF; break; }

// if data accepted
if((read & 0x1F) == 0x05)

{
// set token to data accepted
*token = 0x05;
// wait for write to finish (timeout = 250ms)
readAttempts = 0;
while (SPI_transfer (0xFF) == 0x00)
if(++readAttempts == SD_MAX_WRITE_ATTEMPTS) { *token = 0x00;
break; }
}

// deassert chip select
SPI_transfer (0xFF);
CS_DISABLEQ);
SPI_transfer (0xFF);

return resl;

}
Listing 3.9: Quellcode der speichernSDCard() Funktion von Bibliothek sd_card.c

Die aufbereiteten Daten werden schlielich auf die SD-Karte geschrieben. Dabei wird die
Schreibadresse fiir den nédchsten Schreibvorgang aktualisiert und im EEPROM gespeichert,
um die Kontinuitdt der Datenerfassung zu sichern. Zusitzlich iiberwacht die Funktion die
Speicherkapazitit und setzt die Schreibadresse zuriick, sollte das Ende des Speicherbereichs
erreicht werden, um einen kontinuierlichen Betrieb des Systems zu gewihrleisten. Durch Software
HxD-Editor kann die gespeicherte Daten auf der SD-Karte iiberpriift werden. Abbildung 3.18
und Abbildung 3.19 zeigt zwei Sektor-Daten als Beispiel auf der SD-Karte gespeichert sind.

3 UMSETZUNG UND SOFTWAREENTWICKLUNG 46

Offset(h) 00 01 02 03 04 05 06 07 08 09 OA 0B OC OD OE OF Dekodierter Text

00000000 ©S5A 65 69 74 3A 20 30 31 3A 31 38 3A 30 34 2C 20 Zeit: 01:18:04, Sektor O
00000010 4C 61 74 3A 20 33 30 2E 30 35 39 34 20 4E 2C 20 Lat: 30.0594 N,
goaonn2n: SCIek ek 3A 2031 .32 302K 353734932 720:-45°00° Lons 120057420 FE.

Abbildung 3.18: Sektor 0 auf der SD-Karte

00000200 ©SA €5 69 74 3A 20 30 31 3A 31 38 3A 30 36 2C 2 Zeit: 01:18:06, Sektor 1
00000210 4C €61 74 3A 20 33 30 2E 30 35 39 31 20 4E 2C 20 Lat: 30.0591 N,
00000220 4C 6F 6E 3A 20 31 32 30 2E 35 37 34 30 20 45 0D Lon: 120.5740 E.

Abbildung 3.19: Sektor 1 auf der SD-Karte

3.2.5 Beschreibung von EEPROM_speicherAddress()

Die Funktion EEPROM_speicherAddress() speichert eine Adresse im EEPROM des Mikro-
controllers und ermoglicht es, den Fortschritt der Datenspeicherung auf der SD-Karte auch nach

einem Neustart des Systems nahtlos fortzusetzen.

Listing 3.10 zeigt die Quellcode der EEPROM_speicherAddress (). Zu Beginn der Funktion
wird mittels der Funktion eeprom_busy_wait () sichergestellt, dass das EEPROM nicht durch
andere Prozesse belegt ist.

1 void EEPROM_speicherAddress(uint32_t Addr) { // Adresse im EEPROM speichern

> eeprom_busy_wait(); // Warten, dass EEPROM nicht besetzt ist

; eeprom_update_block((const void*)&Addr, &speicher_Addr, sizeof(Addr)); //
Adresse im EEPROM speichern

4 }
Listing 3.10: Quellcode der EEPROM_speicherAddress () Funktion

Sobald sichergestellt ist, dass das EEPROM verfiigbar ist, wird die {ibergebene Adresse (Addr)
an einer spezifischen Stelle im EEPROM gespeichert. Diese Aktion wird durch die Funktion
eeprom_update_block() durchgefiihrt, die im Gegensatz zu eeprom_write_block() die
vorhandenen Daten mit den neuen Daten vergleicht und nur schreibt, wenn ein Unterschied
festgestellt wird. Diese Vorgehensweise reduziert den Verschleill des EEPROMs, da unnétige

Schreibvorginge vermieden werden.

3.2.6 Beschreibung von EEPROM_lesenAddress()

Die Funktion EEPROM_lesenAddress() dient dazu, eine gespeicherte Adresse aus dem EE-
PROM des Mikrocontrollers auszulesen. Diese Adresse wird verwendet, um die Position zu

bestimmen, an der die Datenspeicherung auf einem externen SD-Karte, fortgesetzt werden soll.

3 UMSETZUNG UND SOFTWAREENTWICKLUNG 47

Listing 3.11 zeigt die Quellcode der EEPROM_lesenAddress(). Analog zur Funktion
EEPROM_speicherAddress() wird zu Beginn der Funktion eeprom_busy_wait() aufge-
rufen, um sicherzustellen, dass das EEPROM zum Lesen bereit und nicht durch andere Prozesse

belegt ist.

uint32_t EEPROM_lesenAddress(void) { // Adresse im EEPROM lesen

> uint32_t Addr; // Adresse

; eeprom_busy_wait(); // Warten, dass EEPROM nicht besetzt ist

~

eeprom_read_block ((void*)&Addr, &speicher_Addr, sizeof(Addr)); // Adresse
im EEPROM lesen

s return Addr; // Adresse zuriickgeben

}
Listing 3.11: Quellcode der EEPROM_lesenAddress () Funktion

Sobald das EEPROM als verfiigbar bestétigt wurde, nutzt die Funktion eeprom_read_block(),
um die am Speicherort speicher_Addr hinterlegte Adresse auszulesen. Diese ausgelesene
Adresse wird dann in die Variable Addr iibertragen. Nach dem erfolgreichen Auslesen der
Adresse wird dieser Wert von der Funktion zuriickgegeben. Diese Adresse wird im System dann

genutzt, um den nichsten Schreibvorgang auf der SD-Karte an der korrekten Stelle fortzusetzen.

3.2.7 Beschreibung von ISR(INTO_vect)

Die Funktion ISR(INTO_vect), speziell konzipiert fiir die Handhabung von Aktionen, die durch
das Driicken des BUTTON1_PIN ausgelost werden. Diese Funktion ermoglicht diese Funktion die
Interaktion des Benutzers mit dem System, insbesondere das Umschalten zwischen dem Mess-
und dem Lesemodus sowie die manuelle Initialisierung des Systems. Abbildung 3.20 zeigt die

Struktur und Funktionsweise dieser Funktion.

Listing 3.12 zeigt die Quellcode der ISR(INTO_vect). Zundchst wird durch eine kurze Verzo-
gerung die Entprellung des Tasters sichergestellt. Diese Verzogerung (_delay_ms (20)) hilft,
unerwiinschte Signale durch das mechanische Prellen des Tasters zu eliminieren, was fiir die

Zuverlassigkeit der Tastererkennung entscheidend ist.

1

5

3

4

10

3 UMSETZUNG UND SOFTWAREENTWICKLUNG

48

v

\ Entprellung (20ms warten) \

v

< BUTTON1_PIN gedriickt? >

ja

im Lesemodus? Bji)©
N /
o . :
JE(\ BUTTON2_PIN NICHT gedr\']ckt?>%
& Y

| Messung Modus umschalten \ \ Setzen der Adresse im EEPROM auf 0 \

| System neu initialisieren "l

A\ o
&7
il
7

:

N
>
b

Abbildung 3.20: Struktur und Funktionsweise der ISR(INTO_vect) Funktion

ISRCINTO_vect) // INTO

{
_delay_ms(20); // Entprellung (20ms)

if (!'(PIND & (1 << BUTTON1_PIN))) { // Prifen, ob BUTTON1_PIN gedriuckt ist

(0 = gedruckt, 1 = nicht gedruckt)
if (Lesen_modus) { // Wenn im Lesemodus

return; // Zurick

}

if (PIND & (1 << BUTTON2_PIN)) { // Prufen, ob BUTTON2_PIN NICHT gedru

ckt ist (0 = nicht gedrickt, 1 = gedrickt)

Messung_modus = !Messung_modus; // Messung Modus umschalten (0

AUS, 1 = AN)
} else { // Wenn BUTTON2_PIN auch gedriuckt ist (0 =

nicht gedrickt)

gedriuckt,

EEPROM_speicherAddress (0x00000000); // Setzen der zuletzt

gespeicherten Adresse auf 0x00000000 wdhrend der manuellen

Initialisierung

initializeSystem(); // System neu initialisieren

Listing 3.12: Quellcode der ISR(INTO_vect) Funktion

1

3 UMSETZUNG UND SOFTWAREENTWICKLUNG 49

Im Anschluss priift die ISR den Zustand des Tasters. Sollte der Taster, der den Interrupt
ausgelost hat, aktiv sein, wird untersucht, ob sich das System im Lesemodus befindet. Um
Interferenzen wihrend des Leseprozesses zu vermeiden, wird in diesem Modus keine weitere

Aktion durchgefiihrt, und die ISR wird beendet.

Falls BUTTON1_PIN gedriickt und das System befindet sich nicht im Lesemodus, wird iiberpriift,
ob BUTTON2_PIN nicht gedriickt ist. In diesem Fall wird der Messmodus (Messung_modus)

umgeschaltet. Dies erlaubt es, den Messvorgang zu starten oder zu stoppen.

Ein besonderes Feature ist die Moglichkeit zur Systeminitialisierung: Wenn zusitzlich zum
BUTTON1_PIN auch der BUTTON2_PIN gedriickt, so fiihrt dies zur Initialisierung des Systems.
Dabei wird zuerst die Adresse im EEPROM auf 0x00000000 gesetzt, was fiir eine manuelle
Initialisierung steht. AnschlieBend wird das System durch Aufruf von initializeSystem() in

Unterabschnitt 3.2.1 neu initialisiert.

3.2.8 Beschreibung von ISR(INT1_vect)

Die Funktion ISR(INT1_vect), speziell konzipiert fiir die Handhabung von Aktionen, die durch
das Driicken des BUTTON2_PIN ausgelost werden. Diese Funktion ermoglicht diese Funktion die
Interaktion des Benutzers mit dem System, insbesondere das Umschalten zwischen dem Mess-
und dem Lesemodus sowie die manuelle Initialisierung des Systems. Abbildung 3.21 zeigt die

Struktur und Funktionsweise dieser Funktion.

Listing 3.13 zeigt die Quellcode der ISR(INT1_vect). Ahnlich wie bei der zuvor beschrie-
benen ISR in Unterabschnitt 3.2.7 beginnt auch diese Routine mit einer Entprellungsphase
_delay_ms(20), um zuverldssige Signale zu gewihrleisten und Fehlauslosungen durch das

mechanische Prellen des Tasters zu verhindern.

ISR(INT1_vect)

> {
3 _delay_ms(20); // Entprellung (20ms)

i

if (I'(PIND & (1 << BUTTON2_PIN))) { // Priufen, ob BUTTON2_PIN gedriickt ist
(0 = gedrickt, 1 = nicht gedruckt)
if (Messung_modus) { // Wenn im Messmodus
return; // Zurick
}

if (Lesen_modus) { // Wenn im Lesemodus, verhindere Reinitialisierung

9

10

16

19

20

3 UMSETZUNG UND SOFTWAREENTWICKLUNG 50

X1

| Entprellung (20ms warten) |

v

4 B
4 BUTTON2_PIN gedriickt?
(im Messmodus?>ji)©

im Lesemodus?>ia—)©

f<BUTr0N1_P|N NICHT gedruckﬂ}ﬁ" ¥

| System neu initialisieren :\ | Setzen der Adresse im EEPROM auf 0 :\
| Lesen Modus umschalten \ |" System neu initialisieren n\

v

| Messmodus deaktivieren |

| \/ R &
r e <

3
é

Abbildung 3.21: Struktur und Funktionsweise der ISR(INT1_vect) Funktion

return; // Zurick
}
if (PIND & (1 << BUTTON1_PIN)) { // Prifen, ob BUTTON1_PIN NICHT gedriu
ckt ist (0 = nicht gedrickt, 1 = gedrickt)

initializeSystem(); // System neu initialisieren

Lesen_modus = !Lesen_modus; // Lesen Modus umschalten (0 = AUS, 1 =
AN)

Messung_modus = 0; // Wenn im Lesemodus, deaktivieren des Messmodus
(0 = AUS, 1 = AN)

} else { // Wenn BUTTON1_PIN auch gedriickt ist (0 = gedruckt, 1 =
nicht gedrickt)

EEPROM_speicherAddress (0x00000000); // Setzen der zuletzt
gespeicherten Adresse auf 0x00000000 wdahrend der manuellen
Initialisierung

initializeSystem(); // System neu initialisieren

Listing 3.13: Quellcode der ISR(INT1_vect) Funktion

3 UMSETZUNG UND SOFTWAREENTWICKLUNG 51

Im Anschluss wird der Zustand von BUTTON2_PIN iiberpriift. Falls dieser gedriickt ist, evaluiert
die ISR, ob sich das System in einem speziellen Modus befindet, wie dem Mess- oder Lesemodus.
Sollte eine dieser Bedingungen erfiillt sein, wird die ISR ohne Ausfiihrung weiterer Aktionen

beendet, um die Integritit dieser Betriebsmodi zu wahren.

Falls der BUTTON1_PIN nicht aktiv ist, leitet die ISR eine Neuinitialisierung des Systems ein,
gefolgt von einem Umschalten in den Lesemodus, sofern das System sich nicht bereits in
einem spezifischen Modus befindet. Diese Aktion stellt sicher, dass der Lesemodus aktiviert
wird, wihrend gleichzeitig der Messmodus deaktiviert bleibt, um eine klare Trennung der

Funktionalitdten zu gewdhrleisten.

Eine manuelle Initialisierung des Systems wird durchgefiihrt, sowohl BUTTON1_PIN als auch
BUTTON2_PIN gedriickt sind, wird das System manuell initialisiert. Dabei wird die im EEPROM

gespeicherte Adresse auf 0x00000000 zuriickgesetzt und das System neu gestartet.

Bis hierhin wurden die wichtigsten Funktionen und Routinen des Mikrocontroller-Programms auf
einem ATmega88PA Mikrocontroller entwickelt. Diese Funktionen ermdéglichen die effiziente
Handhabung von GPS-Daten, die serielle Kommunikation mit einem GPS-Modul, die Speicherung
von Daten auf einer SD-Karte und die Interaktion mit dem Benutzer iiber Tasten. Im nichsten
Abschnitt wird die Entwicklung der PC-Anwendung zur Verarbeitung und Speicherung von

GPS-Daten in einer GPX-Datei beschrieben.

3.3 Entwicklung der PC-Anwendung

Die Entwicklung der PC-Anwendung fiir die Verarbeitung und Speicherung von GPS-Daten in
einer GPX-Datei erfolgte in der Entwicklungsumgebung Visual Studio Community 2022. Das
Hauptziel der Anwendung ist die effiziente Handhabung von Daten, die iiber einen COM-Port
von einem GPS-Empfinger empfangen werden. Die Software ist in der Lage, die empfangenen
Daten in ein spezifisches Format zu konvertieren und sie in einer GPX-Datei zu speichern, welche
fiir die weitere Verwendung in Karte geeignet ist. Die Anwendung wurde in C++ entwickelt und

nutzt die Windows-API fiir die serielle Kommunikation und die Dateiverwaltung.

Im Folgenden wird die Softwareentwicklung und Funktionalitit der PC-Anwendung eingehend
erldutert. Listing 5.2 in Anhang zeigt den vollstindigen Quellcode der PC-Anwendung, der in

Visual Studio Community 2022 entwickelt wurde. Die Anwendung beginnt mit der Einbindung

3 UMSETZUNG UND SOFTWAREENTWICKLUNG 52

der erforderlichen Header-Dateien, die fiir die serielle Kommunikation und die Dateiverwal-
tung benotigt werden. Dazu gehoren windows.h, iostream, fstream, string, ctime und
Shlobj.h. Die Windows-API wird fiir die serielle Kommunikation und die Dateiverwaltung ge-
nutzt, wiahrend die anderen Header-Dateien fiir die Verarbeitung und Speicherung von GPS-Daten

in einer GPX-Datei benétigt werden.

Zunichst setzt die Anwendung die Locale-Einstellungen durch den Aufruf der Funktion
setlocale(LC_ALL,), um eine korrekte Darstellung von Umlauten und Sonderzeichen
wie ,,4%, ,,0°, ,,u“ und ,,B* zu gewihrleisten. Der Benutzer wird daraufthin aufgefordert, die
Nummer des zu verwendenden COM-Ports anzugeben, was fiir die Kommunikation mit dem
GPS-Empfinger entscheidend ist. Nach Eingabe der COM-Port-Nummer durch den Benutzer
offnet und konfiguriert das Programm diesen Port mit spezifischen Parametern wie Baudrate,
Bytegrofle, Stopbits und Paritidt, um eine stabile und korrekte Dateniibertragung zu gewéhrleisten.
Zeile 52-89 von Listing 5.2 zeigt die Quellcode zur Konfiguration des COM-Ports. Darin wird
BaudRate auf 115200 gesetzt, um die Dateniibertragungsgeschwindigkeit mit Mikrocontroller

bei Lesenmodus zu synchronisieren.

AnschlieBend ermittelt die Software den Pfad zum Benutzerdokumente-Ordner und erstellt dort
einen speziellen Ordner fiir die Speicherung der GPX-Dateien. Darauthin generiert das Programm
einen Dateinamen fiir die GPX-Datei, basierend auf dem aktuellen Datum und der Uhrzeit, um
Eindeutigkeit zu gewihrleisten. Das Herzstiick der Anwendung ist die Datenerfassung vom COM-
Port und deren anschlieBende Verarbeitung. Die empfangenen Daten werden kontinuierlich gelesen
und relevante Informationen wie GPS-Positionen und Zeitstempel extrahiert und verarbeitet.
Unterabschnitt 3.3.5 wird detailliert beschreiben, wie die GPS-Daten verarbeitet und in eine

GPX-Datei gespeichert werden.

Die verarbeiteten GPS-Daten werden in das GPX-Format konvertiert und in der vorbereiteten Datei
gespeichert, was fiir die spatere Nutzung der Daten in Karte entscheidend ist. Nach erfolgreicher
Speicherung der Daten schliet das Programm die GPX-Datei und gibt den COM-Port frei, um
keine Ressourcen unnotig zu belegen und den Port fiir andere Anwendungen verfiigbar zu machen.
Zum Abschluss informiert die Anwendung den Benutzer iiber den Speicherort der GPX-Datei,
was ein wichtiger Schritt zur Erleichterung der Lokalisierung und anschlieBenden Verwendung
der Datei ist. Unterabschnitt 3.3.6 wird detailliert beschreiben, wie die GPX-Datei zum Schluss

bearbeitet werden.

3 UMSETZUNG UND SOFTWAREENTWICKLUNG 53

3.3.1 Beschreibung von COMDatenLesen()

Die Funktion COMDatenLesen(HANDLE hCom, std::string& daten) ermoglicht das Lesen
von Daten, die iiber einen COM-Port empfangen werden, und ist somit entscheidend fiir die
Interaktion zwischen dem GPS-Empfianger und der PC-Anwendung. Abbildung 3.22 zeigt die

Struktur und Funktionsweise dieser Funktion.

?

| COM-Port &ffnen (hCom) |

v .
Nein

f\ Lesen Sie Daten vom COM-Port (hCom) in Puffer (puffer) 1

Nein

a , 3
j—\ Anzahl der gelesenen Bytes > 0 1 ‘ Rﬂckgabe Misserfolg (false) ‘

\: Nullterminator hinzufigen Riickgabe Misserfolg (false) |

v

| Daten in den String (daten) schreiben |

2

| Rickgabe Erfolg (true) :\

———

L -<
> <

[

¥
X

o

Abbildung 3.22: Struktur und Funktionsweise der COMDatenLesen() Funktion

Listing 3.14 zeigt den Quellcode der COMDatenLesen() Funktion. Zunéchst priift die Funktion
die Giiltigkeit des tibergebenen COM-Port-Handles (hCom), um sicherzustellen, dass eine Verbin-
dung zum COM-Port besteht und dieser bereit ist, Daten zu empfangen. Die Hauptaufgabe der
Funktion ist es, Daten vom COM-Port unter Verwendung der Win32 API-Funktion ReadFile ()
zu lesen. Diese liest die Daten, die liber den COM-Port gesendet werden, und speichert sie
zundchst in einem temporiren Puffer. Anschlieend werden die Daten aus dem Puffer in den
iibergebenen String daten iibertragen.

bool COMDatenLesen(HANDLE hCom, std::string& daten) {
char puffer[64]; // Puffer fir die empfangenen Daten (64 Bytes)
DWORD geleseneBytes; // Anzahl der gelesenen Bytes
if (ReadFile(hCom, puffer, sizeof(puffer) - 1, &geleseneBytes, nullptr)
&& geleseneBytes > 0) { // Lesen Sie die Daten vom COM-Port
puffer[geleseneBytes] = '\0’; // Nullterminator hinzufiigen
daten = puffer; // Daten in den String schreiben
return true; // Erfolg
}

return false; // Misserfolg

3 UMSETZUNG UND SOFTWAREENTWICKLUNG 54

3

Listing 3.14: Quellcode der COMDatenLesen Funktion

Wihrend des Leseprozesses wird kontinuierlich iiberpriift, ob Daten erfolgreich empfangen
wurden, indem die Anzahl der gelesenen Bytes (geleseneBytes) iiberwacht wird. Bei erfolg-
reichem Empfang von Daten (d.h., die Anzahl der gelesenen Bytes ist groler als Null) wird der
Inhalt des Puffers in den String daten kopiert. Die Funktion gibt einen booleschen Wert zuriick,
der den Erfolg des Lesevorgangs anzeigt. Dies erlaubt es der aufrufenden Funktion, entsprechend
auf erfolgreiche oder fehlgeschlagene Lesevorginge zu reagieren. Im Falle eines Fehlschlags

wird ein Fehlerstatus zuriickgegeben, der signalisiert, dass keine Daten gelesen wurden.

Abbildung 3.23 zeigt die Benutzeroberflache der PC-Anwendung zur Konfiguration des COM-
Ports. Der Benutzer kann hier die Nummer des zu verwendenden COM-Ports eingeben, um die

Verbindung zum GPS-Empfinger herzustellen.

Bitte geben Sie die Nummer des gewiinschten COM-Ports ein: 3
Erfolgreich verbunden mit COM3:

Bitte driicken Sie die Taste 2, um die GPX-Datei zu speichern!

Abbildung 3.23: Benutzeroberfliche zur Konfiguration des COM-Ports

3.3.2 Beschreibung von aktuellesDatumHolen()

Die Funktion aktuellesDatumHolen() zielt darauf ab, das aktuelle Datum zu ermitteln und
in einem standardisierten Format zuriickzugeben. Ihre Rolle ist entscheidend fiir die Erstellung
préziser Zeitstempel in den GPX-Daten. Abbildung 3.24 zeigt die Struktur und Funktionsweise

dieser Funktion.

Der Prozess beginnt mit dem Abruf der aktuellen Systemzeit, wobei die C++ Standardbibliothek
und die Funktion time (nullptr) zum Einsatz kommen, um die Zeit als time_t-Objekt zu
erhalten. Dieses Objekt wird anschlieBend in eine tm-Struktur umgewandelt, die detaillierte
Informationen tiber das Jahr, den Monat, den Tag und weitere Zeitkomponenten enthilt. Diese

Umwandlung erfolgt durch die Funktion localtime_s().

Nach der Umwandlung in eine strukturierte Form wird das Datum mit der Funktion strftime ()
in ein standardisiertes Format gebracht, iiblicherweise ,,JJJJ-MM-TT* (Jahr-Monat-Tag). Das

formatierte Datum wird dann als String zuriickgegeben und kann in der Anwendung verwendet

3 UMSETZUNG UND SOFTWAREENTWICKLUNG 55

?

\ Aktuelle Zeit abrufen (jetzt) |

v

\ Zeitstruktur erstellen (zeitstruktur)

v

[Puffer fir das Datum erstellen (datumPuffer) (80 Bytes) \

v

| Zeit in die Zeitstruktur konvertieren (localtime_s(&zeitstruktur, &jetzt))

v

\j Format J]JJ-MM-TT in den Puffer (datumPuffer) schreiben (strftime) \

v

1 Das Datum aus dem Puffer zuriickgeben \

®

Abbildung 3.24: Struktur und Funktionsweise der aktuellesDatumHolen() Funktion

werden, um die Zeitstempel in den GPX-Dateien zu hinzufiigen. Listing 3.15 zeigt den Quellcode

der aktuellesDatumHolen() Funktion.

std::string aktuellesDatumHolen() { // Aktuelles Datum abrufen

> time_t jetzt = time(nullptr); // Aktuelle Zeit abrufen

3 struct tm zeitstruktur; // Zeitstruktur erstellen

4

6

7

char datumPuffer([80]; // Puffer fur das Datum (80 Bytes)

localtime_s (&zeitstruktur, &jetzt); // Zeit in die Zeitstruktur
konvertieren

strftime (datumPuffer, sizeof(datumPuffer), "%Y-%m-%d", &zeitstruktur); //
Format: JJJJ-MM-TT

return datumPuffer; // Datum zuriickgeben

}

Listing 3.15: Quellcode der aktuellesDatumHolen Funktion

3.3.3 Beschreibung von aktuellesDatumUndUhrzeitHolen()

Die Funktion aktuellesDatumUndUhrzeitHolen() hat die Aufgabe, sowohl das aktuelle
Datum als auch die genaue Uhrzeit zu ermitteln und in einem spezifischen Format zuriickzugeben.
Die Bedeutung dieser Funktion erstreckt sich Benennung der GPX-Dateien. Abbildung 3.25 zeigt

die Struktur und Funktionsweise dieser Funktion.

Der Prozess beginnt mit der Erfassung der aktuellen Systemzeit, wobei ein time_t-Objekt

3 UMSETZUNG UND SOFTWAREENTWICKLUNG 56

7

J Aktuelle Zeit abrufen (jetzt)

v

\: Zeitstruktur erstellen (zeitstruktur) |

v

Jj Puffer fur das Datum (datumPuffer) erstellen (80 Bytes)

v

\ Zeit in die Zeitstruktur konvertieren (localtime_s(&zeitstruktur, &etzt)) “\

v

\ Format JJJJMMTT_HHMMSS in den Puffer (datumPuffer) schreiben (strftime)

v

\j Das Datum und die Uhrzeit aus dem Puffer zuriickgeben

o

Abbildung 3.25: Struktur und Funktionsweise der aktuellesDatumUndUhrzeitHolen()
Funktion

verwendet wird, um die gegenwirtige Zeit in Sekunden seit dem Unix-Epoch zu erhalten. Die
erfasste Zeit wird dann in eine strukturierte, fiir Menschen lesbare Form umgewandelt, indem die
Funktion localtime_s () genutzt wird, um die time_t-Zeit in eine tm-Struktur zu konvertieren.

Diese Struktur beinhaltet detaillierte Informationen tiber das Datum und die Uhrzeit.

AnschlieBend wird das Datum und die Uhrzeit in ein spezifisches Format gebracht, typischer-
weise , JJJJMMTT_HHMMSS* (JahrMonatTag_StundeMinuteSekunde), durch den Einsatz der
Funktion strftime (). Nach der Formatierung gibt die Funktion das Datum und die Uhrzeit als
String zuriick, der fiir die Benennung der GPX-Dateien verwendet werden kann. Listing 3.16

zeigt den Quellcode der aktuellesDatumUndUhrzeitHolen() Funktion.

std::string aktuellesDatumUndUhrzeitHolen() { // Aktuelles Datum und

Uhrzeit abrufen

> time_t jetzt = time(nullptr); // Aktuelle Zeit abrufen

3 struct tm zeitstruktur; // Zeitstruktur erstellen

4

5

6

char datumPuffer([80]; // Puffer fiir das Datum (80 Bytes)

localtime_s (&zeitstruktur, &jetzt); // Zeit in die Zeitstruktur
konvertieren

strftime (datumPuffer, sizeof(datumPuffer), "%Y%m%d_%H%M%S", &zeitstruktur);
// Format: JJJIJMMTT_HHMMSS

return datumPuffer; // Datum und Uhrzeit zurickgeben

}
Listing 3.16: Quellcode der aktuellesDatumUndUhrzeitHolen Funktion

3 UMSETZUNG UND SOFTWAREENTWICKLUNG 57

3.3.4 Beschreibung von BreitenlLingengradKonvertieren()

Die Funktion BreitenLdngengradKonvertieren() besteht darin, die Rohdaten der GPS-
Koordinaten, die in Form von Strings vorliegen, in ein standardisiertes Dezimalformat zu
konvertieren. Diese Konvertierung ist entscheidend fiir die korrekte Darstellung und Weiterverar-
beitung der geografischen Positionen. Abbildung 3.26 zeigt die Struktur und Funktionsweise

dieser Funktion.

?

| Rohwert iibergeben (rohwert) |

v

| Dezimalwert extrahieren (dezimalwert) (Substring bis zum ersten Leerzeichen) |

v

. Richtung ist 'S' oder 'W*

P

Dezimalwert negieren (-dezimalwert) | Y

X

M

Dezimalwert zuruckgeben |

®

Abbildung 3.26: Struktur und Funktionsweise der BreitenLdngengradKonvertieren()
Funktion

Der Prozess beginnt mit der Entgegennahme von zwei Parametern: dem Rohwert der Koordinaten
(rohwert) in einem nicht-standardisierten Format und der geografischen Richtung (richtung),
die durch einen Charakter wie ,,N* fiir Norden, ,,S* fiir Stiden, ,,E* fiir Osten und ,,W** fiir Westen
angegeben wird. Die Funktion extrahiert zunéchst den relevanten Teil des Rohwertstrings und
bereitet ihn auf die Konvertierung vor. Die geografische Richtung bestimmt das Vorzeichen der
konvertierten Koordinate, wobei fiir Breiten im Siiden und Langen im Westen das Vorzeichen
negativ wird. AnschlieBend konvertiert die Funktion die Koordinaten in das Dezimalgradformat,
ein weit verbreitetes Format, das von den meisten geografischen Informationssystemen und GPS-
Geriten genutzt wird. Die konvertierten Koordinaten werden als String im Dezimalgradformat
zurilickgegeben, was eine einfache und effiziente Weiterverarbeitung und Speicherung der

GPS-Daten ermoglicht.

Besonders hervorzuheben ist hier die Anpassung die Anzahl der Ziffern fiir Breiten- und

Lingengrade. Dies bedeutet, dass die Anzahl der Ziffern fiir Breiten- und Langengrade fiir

o

3 UMSETZUNG UND SOFTWAREENTWICKLUNG 58

verschiedene Orte auf der Welt unterschiedlich sind. Z.B ist die Lingengrade in Shaoxing,
China gegen 120 .XXXX E, wihrend die Lidngengrade in Lippstadt, Deutschland gegen 8 . XXXX
E. Listing 3.17 und Listing 3.18 zeigt, wie automatisch die Anzahl der Ziffern fiir Breiten-
und Lingengrade bestimmt wird, um immer 4 Dezimalstellen zu speichern. Die Anpassung
der Anzahl der Ziffern fiir Breiten- und Lingengrade ist entscheidend fiir die Genauigkeit der
GPS-Daten. Wenn die Anzahl der Ziffern fiir Breiten- und Lingengrade nicht richtig eingestellt

ist, kann es zu einer falschen Positionierung auf der Karte fiihren.

size_t breiteEndePos = nachricht.find(’ , breitePos + 5); // Position des
Leerzeichens nach der Breite

if (breiteEndePos == std::string::npos || breiteEndePos > laengePos) { //
Wenn das Leerzeichen nicht gefunden wird oder die Position groéRer als
die Ldnge ist
breiteEndePos = laengePos; // Position der Lange

}

std::string rohBreite = nachricht.substr(breitePos + 5, breiteEndePos -

breitePos - 5); // Rohwert der Breite extrahieren

Listing 3.17: Quellcode der BreitengradKonvertieren Funktion

size_t laengeEndePos = nachricht.find(’ ’, laengePos + 5); // Position des
Leerzeichens nach der Ldadnge

if (laengeEndePos == std::string::npos) { // Wenn das Leerzeichen nicht
gefunden wird
laengeEndePos = nachricht.length(); // Lidnge des Strings

}

std::string rohLaenge = nachricht.substr(laengePos + 5, laengeEndePos -

laengePos - 5); // Rohwert der Lange extrahieren

Listing 3.18: Quellcode der LdngengradKonvertieren Funktion

Zuerst wird die Position des Leerzeichens nach der Breite bzw. Linge gefunden, um die Anzahl
der Ziffern fiir Breitengrade und Lingengrade zu bestimmen. Wenn das Leerzeichen nicht
gefunden wird, wird die Position der Linge des Strings verwendet. Anschlieend wird der
Rohwert der Breite bzw. Lange extrahiert. Die Anzahl der Ziffern fiir Breiten- und Lingengrade

wird dann automatisch bestimmt, um immer 4 Dezimalstellen zu speichern.

3 UMSETZUNG UND SOFTWAREENTWICKLUNG 59

3.3.5 Erstellung von GPX-Datei

GPX, kurz fiir GPS Exchange Format, ist ein XML-Schema, das fiir den Austausch geografischer
Informationen zwischen verschiedenen Systemen konzipiert wurde. Eine GPX-Datei besteht
hauptsachlich aus Wegpunkten, Routen und Tracks, die geografische Standorte und Routenin-
formationen speichern [9]. Die folgenden Elemente sind typischerweise in einer GPX-Datei

enthalten:

1. GPX-Header: Die GPX-Datei beginnt mit einem Header, der die Version des GPX-
Schemas und die XML-Definitionen enthélt. Der Header definiert auch die Struktur der

Datei und die Art der enthaltenen Daten.

2. Wegpunkte: Ein Wegpunkt ist ein geografischer Punkt, der durch seine geografischen
Koordinaten (Breiten- und Langengrad) definiert ist. Jeder Wegpunkt kann zusitzliche

Informationen wie Name, Beschreibung, Hohe und Zeitstempel enthalten.

3. Routen: Eine Route ist eine geplante Reise oder ein Weg, der aus einer Reihe von
Wegpunkten besteht. Jeder Wegpunkt in einer Route ist mit dem vorherigen und dem

nichsten Wegpunkt verbunden, um eine zusammenhingende Route zu bilden.

4. Tracks: Ein Track ist eine aufgezeichnete Spur oder ein Pfad, der aus einer Reihe von
Wegpunkten besteht. Jeder Wegpunkt in einem Track ist mit dem vorherigen und dem

ndchsten Wegpunkt verbunden, um eine kontinuierliche Spur zu bilden.

GPX wird hauptsdchlich von GPS-Geriten und Softwareanwendungen zur Speicherung und
zum Austausch von geografischen Informationen verwendet. Es ist wegen seiner Einfachheit und
Effizienz bei der Speicherung von GPS-spezifischen Informationen weit verbreitet. Im Gegensatz
zu KML (Keyhole Markup Language), einem anderen geografischen Dateiformat, das von Google
Earth und Google Maps verwendet wird [15], ist GPX ein offenes Format, das von einer Vielzahl

von Anwendungen und Geréten unterstiitzt wird.

Ein Beispiel fiir eine GPX-Datei ist in Listing 3.19 dargestellt. Diese Datei enthalt einen Header
und einen Track mit vier Wegpunkten. Darin wird <trkpt lat="51.6894" lon="8.3422">
als ein Wegpunkt definiert, der die geografischen Koordinaten 51.6894 Breitengrad und 8.3422
Liangengrad enthilt. Der <time> Tag enthélt den Zeitstempel des Wegpunkts. Die <trkseg> und

<trk> Tags definieren die Struktur des Tracks, der aus einer Reihe von Wegpunkten besteht.

3 UMSETZUNG UND SOFTWAREENTWICKLUNG 60

1 <?xml version= encoding= ?>
> <gpx xmlns:xsi= xmlns=

xsi:schemalLocation=

version=
creator= >
<trk>
' <trkseg>
5 <trkpt lat= lon= >

6 <time>2024-02-16T14:09:40Z</time>
7 </trkpt>

8 <trkpt lat= lon= >

9 <time>2024-02-16T14:10:01Z</time>
10 </trkpt>

B <trkpt lat= lon= >

12 <time>2024-02-16T14:10:02Z</time>

</trkpt>
14 <trkpt lat= lon= >
15 <time>2024-02-16T14:10:03Z</time>
16 </trkpt>
7 </trkseg>
18 </trk>
v </gpx>

Listing 3.19: Beispiel einer GPX-Datei

Um die GPX-Datei zu speichern, wird zunéchst einen Ordner mit dem Name ,,GXP_Datei‘ im
Benutzerdokumente-Ordner erstellt. Listing 3.20 zeigt den Quellcode, wie der Ordner erstellt
werden. Dann wird eine GPX-Datei im erstellten Ordner erstellt. Das Name der GPX-Datei wird
aus dem aktuellen Datum und der Uhrzeit generiert, um Eindeutigkeit zu gewiahrleisten. Z.B
wird die GPX-Datei Output_20240216_140940. gpx genannt, wenn die Datei am 16. Februar
2024 um 14:09:40 Uhr erstellt wird. Listing 3.21 zeigt den Quellcode, wie die GPX-Datei erstellt

werden.
| char dokumentePfad[MAX_PATH]; // Puffer fir den Dokumentenpfad (MAX_PATH
Bytes)
> HRESULT result = SHGetFolderPathA (NULL, CSIDL_PERSONAL, NULL,
SHGFP_TYPE_CURRENT, dokumentePfad); // Benutzerdokumente-Ordner abrufen

4+ if (!SUCCEEDED(result)) { // Wenn der Dokumentenpfad nicht abgerufen werden

)

3 UMSETZUNG UND SOFTWAREENTWICKLUNG 61

kann, wird eine Fehlermeldung ausgegeben

std::cerr << "Fehler beim Abrufen des Dokumentenpfads" << std::endl; //
Fehlermeldung

return 1; // Beendet das Programm, wenn der Dokumentenpfad nicht

abgerufen werden kann

std::string gxpOrdnerPfad = std::string(dokumentePfad) + "\\GXP_Datei"; //
GXP_Datei-Ordnerpfad

Listing 3.20: Quellcode der GPXOrdnerErstellen Funktion

std::string datumUndUhrzeit = aktuellesDatumUndUhrzeitHolen(); // Aktuelles
Datum und Uhrzeit abrufen
std::string dateiName = gxpOrdnerPfad + "\\Output_" + datumUndUhrzeit + ".

gpx"; // Dateiname

Listing 3.21: Quellcode der GPXDateiErstellen Funktion

Die empfangenen Daten werden dann in die generierte GPX-Datei geschrieben. Um die emp-
fangenen Daten besser lesen zu konnen, wird die empfangenen Daten in Terminal ausgegeben.
Listing 3.22 zeigt den Quellcode, wie die empfangenen Daten in Terminal ausgegeben werden.
Dann wird die empfangenen Daten mit dem Format von Listing 3.19 in die GPX-Datei geschrieben.
Zeile 162-183 von Listing 5.2 zeigt den Quellcode, wie die empfangenen Daten in die GPX-Datei
geschrieben werden.

std::cout << "Empfangene Daten: << nachricht << std::endl; // Empfangene

Daten im Terminal anzeigen

Listing 3.22: Quellcode der TerminalAusgabe Funktion

SchlieBlich, wenn die empfangenen Daten ,,LLesen: AUS* sind, wird die GPX-Datei mit einem
Befehl zum SchlieBen der Dateistreams ordnungsgemaf beendet. Das Unterabschnitt 3.3.6 wird

die Abschlussfunktionen des Programms beschreiben.

3.3.6 Beschreibung von abschluss

Dieser Teil des Programms ist dafiir verantwortlich, alle offenen Prozesse und Ressourcen korrekt
zu schlieBen und sicherzustellen, dass die gesammelten Daten vollstindig und korrekt gespeichert

werden. Abbildung 3.27 zeigt die Struktur und Funktionsweise dieses Abschnitts.

3 UMSETZUNG UND SOFTWAREENTWICKLUNG

¢

\ GPX-Datei: o6ffnen (gpxDatei) |

v
| Tracksegment-Element schreiben (</trkseg>) \
' v
\ Track-Element schreiben (</trk>) \
, v ,
\ GPX-Datei-Ende schreiben (</gpx>) \
[: 7 GPX-Datei schlieBen (gpxDatei schlielSen)r \
| .COM-Port schlieRen (CIoseHandIe(hCom)). \
, ' ’ ' ,
\ Ausgabe: "Die Daten wurden in dateiName gespeichert." anzeigen \
\ Auf Benutzereingabe warten (system(“pause")) 7 :\

\ Programm beenden (Rickgabe 0) :\

®

Abbildung 3.27: Struktur und Funktionsweise des abschluss Abschnitts

Der wichtigste Schritt ist das korrekte SchlieBen der GPX-Datei. Dies umfasst das Einfiigen der

abschlieBenden XML-Tags, die fiir das Format einer GPX-Datei erforderlich sind. Diese Schritte

sind unerldsslich, um eine giiltige und standardkonforme GPX-Datei zu gewihrleisten, die von

anderen Anwendungen und Geriten gelesen werden kann. Listing 3.23 zeigt den Quellcode des

Abschnitts abschluss.

i abschluss:

> // Abschluss der GPX-Datei schreiben
; gpxDatei << "
1+ gpxDatei << " </trk>\n"; // Track-Element
s gpxDatei << "</gpx>"; // GPX-Datei-Ende

¢ gpxDatei.close(); // GPX-Datei schlielen

7 CloseHandle ChCom); // COM-Port schlielRen

8

9o std::cout << "Die Daten wurden in "
::endl; // Erfolgsmeldung

0o system("pause"); // Programm anhalten

11

2 return 0; // Programm beenden

Listing 3.23: Quellcode des Abschnitts abschluss

<< dateiName << "

</trkseg>\n"; // Tracksegment-Element

gespeichert.'

<< std

3 UMSETZUNG UND SOFTWAREENTWICKLUNG 63

Nachdem alle notwendigen Daten in die GPX-Datei geschrieben wurden, wird die Datei mit
einem Befehl zum Schlieen der Dateistreams ordnungsgemifl beendet. Diese Aktion stellt
sicher, dass alle geschriebenen Daten gespeichert und die Datei korrekt abgeschlossen wird,
was einen eventuellen Datenverlust verhindert. Ein weiterer wesentlicher Schritt ist die Freigabe
des COM-Ports. Dies wird erreicht, indem der COM-Port mit der Funktion CloseHandle()
geschlossen wird, um sicherzustellen, dass der Port fiir andere Anwendungen verfiigbar ist und
keine Ressourcen unnotig belegt werden. SchlieBlich wird dem Benutzer eine Erfolgsmeldung
angezeigt, die den Speicherort der GPX-Datei enthélt. Das Programm wird angehalten, um dem
Benutzer Zeit zu geben, die Meldung zu lesen, bevor es beendet wird. Abbildung 3.28 zeigt die
Benutzeroberfliche der PC-Anwendung nach dem Abschluss des Datenverarbeitungsprozesses.

Die Abbildung 3.29 zeigt den Inhalt der GPX-Datei ,,Output_20240216_143811.gpx* als Beispiel.

.3300
.3301
.3301
.3301
.3301

Empfangene Daten: Zeit: 14:21: Lat: 51.7140 8
8
8
8
8
8.3301
8
8
8
8
8
8

Empfangene Daten: Zeit: 14:21: Lat: 51.7140
Empfangene Daten: Zeit: 14:21: Lat: 51.7140
Empfangene Daten: Zeit: 14:21: Lat: 51.7140
Empfangene Daten: Zeit: 14:21: Lat: 51.7140
Empfangene Daten: Zeit: 14:21: Lat: 51.7140
Empfangene Daten: Zeit: 14:21: Lat: 51.7140
Empfangene Daten: Zeit: 14:21: Lat: 51.7139
Empfangene Daten: Zeit: 14:21: Lat: 51.7140
Empfangene Daten: Zeit: 14:21: Lat: 51.7140
Empfangene Daten: Zeit: 14:21: Lat: 51.7140
Empfangene Daten: Zeit: 14:21: Lat: 51.7140
Empfangene Daten: Lesen: AUS

Die Daten wurden in C:\Users\chang\Documents\GXP_Datei\Output_202U40216_176U420.gpx gespeichert.
Driicken Sie eine beliebige Taste . . . |

Lon:
Lon:
Lon:
Lon:
Lon:
Lon:
Lon:
Lon:
Lon:
Lon:
Lon:
Lon:

.3301
.3301
.3301
.3301
.3301
.3301

F S i i 3 e e e e
mmmmmmMmmMmMmMmMMmMmMmMmMmMm

Abbildung 3.28: Benutzeroberfliche der PC-Anwendung nach Abschluss des
Datenverarbeitungsprozesses

pt lat="51.7140" 1
©>2024-02-16T1.

rkpt lat="51.7140" lon
2024-02-16T1

lat="51.
2024-02-16T1

t lat="51.7140" 1
2>2024-02-16T14:

lat="51.7140" 1
2024-02-16T14:

t lat="51.7140" lon
2024-02-16T14:

t lat="51.7140" lon
2024-02-16T14:

Abbildung 3.29: Inhalt der GPX-Datei ,,Output_20240216_143811.gpx*

3 UMSETZUNG UND SOFTWAREENTWICKLUNG 64

Bis hierhin wurden die wichtigsten Aspekte der Softwareentwicklung und die Funktionalitéiten der
PC-Anwendung zur Verarbeitung und Speicherung von GPS-Daten entwickelt. Die beschriebenen
Funktionen und Ablaufe bilden das Fundament der Anwendung und erméglichen eine effiziente

Handhabung von GPS-Daten, die von UART-Schnittstelle des Mikrocontrollers gesendet werden.

4 TEST UND ERGEBNISSE 65

4 Test und Ergebnisse

In diesem Abschnitt werden zuerst die Testmethoden und die Testergebnisse des GPS-Trackers
beschrieben. Anschlieend wird die Analyse der GPS-Daten in verschiedenen Situationen

durchgefiihrt. SchlieBlich werden die Ergebnisse der Tests und Validierungen zusammengefasst.

4.1 Funktionstests

4.1.1 Vorgehensweise von Funktionstest

Um die Funktionalitit des GPS-Trackers zu testen, werden verschiedene Tests durchgefiihrt,
die auf spezifischen Anforderungen basieren. Zuerst wird jede Komponente des GPS-Trackers

einzeln getestet, um sicherzustellen, dass sie ordnungsgemél funktioniert.

Mikrocontroller-Funktionalitétstest: Ein Basisprogramm wird auf den ATmega88PA Mikrocon-
troller hochgeladen, um seine Funktionalitét zu {iberpriifen. Dieses Programm konnte einfache

Aufgaben ausfiihren, wie z.B. das Blinken einer LED.

Dateniibertragungstest: Die Datentibertragung an einen PC wird getestet, indem einige Test-
daten iiber die UART-Schnittstelle (RS232) an den PC gesendet werden. Die Korrektheit der

tibertragenen Daten wird durch das Terminalprogramm wie PuTTY {iberpriift.

Display-Test: Das Display wird getestet, indem einige Sitze oder Zahlen auf dem Display

angezeigt werden. Die Korrektheit der Anzeige wird iiberpriift.

SD-Karten-Speicherfunktionstest: Daten werden auf der SD-Karte gespeichert und anschlieend
ausgelesen, um die Speicherfunktion zu tiberpriifen. Die Korrekigkeit der gespeicherten Daten

wird durch das Software HxD iiberpriift.

GPS-Modul-Empfangstest: Das GPS-Modul wird getestet, indem es in einer offenen Umgebung
platziert wird, um die GPS-Daten zu empfangen. Priifen, ob das GPS-Modul die GPS-Koordinaten
korrekt empfiangt und per UART-Schnittstelle an den Mikrocontroller sendet. Die Korrekigkeit

von GPS-Koordinaten wird durch Vergleich mit den tatsdchlichen Koordinaten iiberpriift.

Anschliefend wird die Gesamtfunktionalitit des GPS-Trackers getestet, um sicherzustellen,

dass alle Komponenten ordnungsgemall miteinander interagieren. Die Tests umfassen die

4 TEST UND ERGEBNISSE 66

Uberpriifung der Tracking-Funktion mit Zeitintervallen, die Speicherfunktion auf der SD-Karte
und die Dateniibertragung an einen PC. Die PC-Anwendung fiir den Empfang und die Speicherung

der Daten wird ebenfalls getestet.

4.1.2 Ergebnisse von Funktionstest

Das Hauptaugenmerk liegt hier auf den Funktionstests. Die geforderten Funktionstests stammen
aus der Anforderungstabelle in Tabelle 1.1. Die Ergebnisse der Tests sind in Tabelle 4.1 aufgefiihrt.
Zusammenfassend kann gesagt werden, dass alle Funktionstests erfolgreich durchgefiihrt wurden

und die Anforderungen erfiillt sind.

Tabelle 4.1: GPS Tracker Testergebnisse

Test-Nr | Testbeschreibung Ergebnis
Uberpriifung der
Funktionalitét des
1 Erfolgreich abgeschlossen
ATmega88PA
Mikrocontrollers.

Test der Genauigkeit und
2 Zuverlassigkeit des Genauigkeit und Zuverlissigkeit bestitigt

GPS-Moduls.

Uberpriifung der Anzeige der

GPS-Koordinaten werden ordnungsgemél} ange-
3 GPS-Koordinaten auf dem

zeigt
Display.
Test der Tracking-Funktion Koordinaten werden in den festgelegten Intervallen
4
mit Zeitintervallen. (1 Sekunde) aufgezeichnet und gespeichert
Test der Speicherfunktion auf | Daten konnen erfolgreich auf der SD-Karte gespei-
5
der SD-Karte. chert und ausgelesen werden
Uberpriifung der
Dateniibertragung tiber UART-Schnittstelle erfolg-
6 Dateniibertragung an einen

reich
PC.

Test der PC-Anwendung fiir
Software empfiangt und speichert Daten im GPX-
7 den Empfang und die
Format ordnungsgemaif
Speicherung der Daten.

4 TEST UND ERGEBNISSE 67

4.2 Demonstrationsbeispiel

Nachdem die Funktionalitdt des GPS-Trackers erfolgreich getestet wurde, wird der GPS-Tracker
in der Praxis getestet, um die Genauigkeit und Zuverlédssigkeit des GPS-Tracking-Systems
zu uiberpriifen. Die folgenden Schritte beschreiben das Testverfahren und die Validierung der

Funktionalitdten des GPS-Tracking-Systems in der Praxis:

Der GPS-Tracker wird an einem Fahrrad befestigt. Dann wird das Fahrrad in Freien (z.B. auf einer
StraB3e) platziert. Nachdem das GPS-Modul die GPS-Koordinaten empfangen hat (Dies kann
30 Sekunden bis mehrere Minuten dauern, abhingig von der Umgebung). Zunéchst das LCD
Display wird gepriift, ob die GPS-Koordinaten korrekt angezeigt werden. Dann wird das Fahrrad
fiir eine bestimmte Zeit bewegt. Wihrend des Tests wird das GPS-Modul die GPS-Koordinaten

in den festgelegten Zeitintervallen aufzeichnen.

Spiter werden die gespeicherten GPS-Koordinaten iiber die UART-Schnittstelle per PC-
Anwendung empfangen und im GPX-Format gespeichert. Die GPX-Datei wird in Kartendiensten
wie gpx.studio importiert, um die zuriickgelegte Strecke anzuzeigen. Die aufgezeichneten GPS-
Koordinaten werden mit einem Handy verglichen, um die Genauigkeit und Zuverladssigkeit der

GPS-Daten zu bewerten.

4 TEST UND ERGEBNISSE 68

4.2.1 Testverfahren und Validierung der Funktionalititen

Abbildung 4.1 und Abbildung 4.2 zeigt die aufgezeichnete Strecke mit orange Farbe im gpx.studio.
Das Fahrrad wurde fiir ca. 10 Minuten bewegt. Die Ubertragung der GPS-Daten an den PC
und die Speicherung der Daten im GPX-Datei dauerte ca. 1 Minute. Abbildung 4.3 zeigt die
aufgezeichnete Strecke mit einem Handy. Vergleich der aufgezeichneten Strecke im gpx.studio
und mit dem Handy zeigt, dass die GPS-Koordinaten fast exakt der tatséchlich zuriickgelegten

Strecke entsprechen.

0h05 1 1 683
Moving time Tracks Track segments Track points

Abbildung 4.1: aufgezeichnete Strecke im 1. Test in gpx.studio

4 TEST UND ERGEBNISSE 69

0h05 1 1 683
Moving time Tracks Track segments Track points

Abbildung 4.2: aufgezeichnete Strecke im 1. Test in gpx.studio (vergrofert)

4 TEST UND ERGEBNISSE 70

Hohenprofil

G 1MMin. ©32km 20m NOm

tart 799 m 1,6 km 2,4 km

Abbildung 4.3: aufgezeichnete Strecke im 1. Test mit Handy

4 TEST UND ERGEBNISSE 71

4.2.2 Testverfahren und Validierung der Zuverlassigkeit

Um die Zuverldssigkeit der GPS-Daten zu bewerten, werden mehrere Tests durchgefiihrt. Das
zweiten Test wird in Abbildung 4.4 und Abbildung 4.5 mit blaue Farbe gezeigt. Das Fahrrad
wurde fiir ca. 30 Minuten bewegt. Wie im ersten Test, die aufgezeichnete Strecke im gpx.studio

zeigt, dass die GPS-Koordinaten fast exakt der tatsidchlich zuriickgelegten Strecke entsprechen.

0h13 1 1 1913
Moving time Tracks Track segments Track points

Abbildung 4.4: aufgezeichnete Strecke im 2. Test in gpx.studio

4 TEST UND ERGEBNISSE 72

= ‘ 4
0h13 1 1 1913
Moving time Tracks Track segments Track points

Abbildung 4.5: aufgezeichnete Strecke im 2. Test in gpx.studio (vergrofiert)

4 TEST UND ERGEBNISSE 73

4.2.3 Testverfahren und Validierung in hohe Geschwindigkeit

Um die Genauigkeit und Zuverldssigkeit der GPS-Daten in hoheren Geschwindigkeiten zu
bewerten, wird ein Auto-Test durchgefiihrt. Das Auto wurde fiir ca. 3 Minuten auf einer
Stadtstrae gefahren. Die Geschwindigkeit des Autos betrug ca. 50 km/h. Die aufgezeichnete

Strecke wird in Abbildung 4.6 und Abbildung 4.7 mit rote Farbe gezeigt.

L,

=

[

0h02 1 1 171

Moving time Tracks Track segments Track points

Abbildung 4.6: aufgezeichnete Strecke im Auto-Test in gpx.studio

4 TEST UND ERGEBNISSE 74

0h02 1 1 171
Moving time Tracks Track segments Track points

Abbildung 4.7: aufgezeichnete Strecke im Auto-Test in gpx.studio (vergriofert)

4 TEST UND ERGEBNISSE 75

4.3 Ergebnisse der Test- und Validierungsphase

Nach der Analyse der GPS-Daten unter verschiedenen Bedingungen lassen sich die Ergebnisse
der Test- und Validierungsphase zusammenfassen. Die Genauigkeit der GPS-Daten ist sehr
hoch, was bedeutet, dass die aufgezeichnete Strecke fast exakt der tatsdchlich zuriickgelegten
Strecke entspricht. Ebenso zeichnet sich die Zuverladssigkeit der GPS-Daten aus, da die GPS-
Koordinaten in den festgelegten Zeitintervallen korrekt aufgezeichnet werden. Die Ubertragung
der GPS-Daten an den PC erfolgt zuverléssig, und die Integritit der iibertragenen Daten wird
gewihrleistet, was die Funktionalitdt der PC-Anwendung bestétigt. Diese arbeitet wie erwartet,
und die gespeicherten Daten im GPX-Format sind korrekt und kdnnen problemlos in Kartendienste
wie gpx.studio importiert werden, um die zuriickgelegte Strecke visuell darzustellen. Auch bei
hoheren Geschwindigkeiten, wie im Auto-Test, zeigt der GPS-Tracker eine hohe Genauigkeit und
Zuverlidssigkeit. Die aufgezeichnete Strecke entspricht fast exakt der tatsidchlich zuriickgelegten

Strecke, was die Eignung des GPS-Trackers fiir verschiedene Anwendungsbereiche bestitigt.

Gemail dem Konstruktionsprinzip des GPS-Trackers ist bekannt, dass das Zeitintervall jeder
Aufzeichnung eine Sekunde betrigt. Die Analyse der GPX-Dateien zeigt, dass die Gro3e der
GPX-Datei von der Bewegungsgeschwindigkeit abhingt. Bei hoheren Geschwindigkeiten, wie
im Auto-Test, ist die Grofle der GPX-Datei in eine gleiche Strecke kleiner als bei niedrigeren
Geschwindigkeiten, wie im Fahrrad-Test. Allerdings ist die Genauigkeit bei hoheren Geschwin-
digkeiten schlechter als bei niedrigeren Geschwindigkeiten. Dies ist darauf zuriickzufiihren, dass
der Abstand zwischen den Aufzeichnungen umso groBer ist, je hoher die Geschwindigkeit ist.
AuBerdem dauert die Ubertragung der GPS-Daten auf den PC und die Speicherung der Daten im

GPX-Datei dauerte etwa 1 Minute pro 10 Minuten aufgezeichneter Strecke.

5 ZUSAMMENFASSUNG UND AUSBLICK 76

S Zusammenfassung und Ausblick

5.1 Zusammenfassung der Arbeitsergebnisse

In dieser Arbeit wurde die Entwicklung eines GPS-Trackers vorgestellt, der durch den Einsatz
eines Low-Cost Mikrocontrollers realisiert wurde. Das primére Ziel dieses Projektes war es,
eine kosteneffiziente, dennoch zuverldssige und benutzerfreundliche Losung fiir die Positionsbe-
stimmung zu entwickeln, die flexibel in verschiedenen Anwendungsbereichen eingesetzt werden
kann. Besondere Aufmerksamkeit galt der sorgfiltigen Auswahl der Hardware-Komponenten
und der Optimierung der Software, um die Kosten zu minimieren, ohne dabei Kompromisse bei

der Leistungsfihigkeit und Zuverldssigkeit einzugehen.

Durch innovative Ansétze in der Softwareentwicklung und Hardwarekonfiguration ist es gelungen,
einen GPS-Tracker zu entwickeln, der sich durch geringe Herstellungskosten, einfache Bedienbar-
keit, hohe Zuverladssigkeit und Genauigkeit auszeichnet. Die Ergebnisse der durchgefiihrten Tests
bestitigen, dass der Tracker in der Lage ist, die Position mit einer beeindruckenden Genauigkeit
zu bestimmen und die Daten effizient und sicher an ein Endgerit zu iibermitteln. Dartiber
hinaus wurde im Rahmen des Projekts eine intuitive Benutzeroberfliche entwickelt, die es
den Nutzern ermdglicht, die aufgezeichneten Daten nicht nur zu visualisieren, sondern auch in
einem nutzerfreundlichen Format zu iibertragen und zu speichern. Diese Funktionalitiit erweitert
deutlich den Nutzen des GPS-Trackers, indem sie eine einfache Analyse und Verwendung der

gesammelten Daten fiir verschiedene Zwecke ermoglicht.

Durch die Kombination aus niedrigen Produktionskosten, hoher Genauigkeit, Benutzerfreund-
lichkeit und der Fihigkeit, Daten effektiv zu visualisieren und zu speichern, bietet der entwickelte
GPS-Tracker eine attraktive Option fiir zahlreiche Anwendungsfille. Dazu zdhlen unter anderem
die Logistik, das Flottenmanagement, personliche Sicherheitsanwendungen, Outdoor-Aktivitdten
und wissenschaftliche Forschung. Die Ergebnisse dieser Arbeit legen nahe, dass der entwickelte
GPS-Tracker eine kostengiinstige und dennoch leistungsstarke Alternative zu teureren kommer-
ziellen Produkten darstellt und neue Moglichkeiten fiir den Einsatz von GPS-Technologie in

verschiedenen Anwendungsbereichen eroffnet.

5 ZUSAMMENFASSUNG UND AUSBLICK 77

5.2 Ausblick auf zukiinftige Entwicklungen und Anwendungen

Der GPS-Tracker basiert derzeit auf einem Entwicklungsboard und ist daher noch relativ grof3
und sperrig. Eines der Hauptziele fiir die Zukunft ist die weitere Miniaturisierung des Gerits, um
es noch vielseitiger einsetzbar zu machen. Durch die Entwicklung eines eigenen PCBs und die
Integration der Komponenten in einem kompakten Gehiduse konnte das Gerét weiter optimiert

werden.

Ein weiterer wichtiger Forschungsschwerpunkt liegt in der Verbesserung der Energieeffizienz des
Gerits, um die Laufzeit des Akkus zu verlangern und den Einsatz in abgelegenen oder schwer
zugénglichen Gebieten zu erleichtern. Bei einige Anwendungen, die eine hohe Genauigkeit
nicht erfordern miissen, muss das GPS Modul nicht stindig 1 Hz arbeiten, sondern nur in
festgelegten Zeitintervallen (Z.B 5 Sekunden), um die Energie zu sparen und die Speichernutzung

zu optimieren.

Dariiber hinaus wird an der Integration zusitzlicher Sensoren eine wichtige Rolle spielen.
Durch die Kombination des GPS-Trackers mit weiteren Sensoren wie Beschleunigungssensoren,
Temperatursensoren oder Feuchtigkeitssensoren konnten neue Anwendungsmdoglichkeiten er-
schlossen werden. Dies wiirde den Anwendungsbereich des Trackers erheblich erweitern und
ihn fiir Aufgaben in der Umweltiiberwachung, in der Logistik oder im Bereich der personlichen

Sicherheit noch attraktiver machen.

Zusammenfassend lisst sich sagen, dass die Entwicklung dieses GPS-Trackers ein vielverspre-
chender erster Schritt in Richtung einer kostengiinstigen und dennoch leistungsstarken Losung
fiir die Positionsbestimmung ist. Die vorgestellte Losung eroffnet neue Moglichkeiten fiir den
Einsatz von GPS-Technologie in verschiedenen Anwendungsbereichen und bietet eine solide

Grundlage fiir zukiinftige Entwicklungen und Anwendungen.

LITERATURVERZEICHNIS 78

Literaturverzeichnis

[1]

[4]
[5]
[6]

[9]

[10]

[11]

[12]

[13]

[14]

R.B. Gaikwad, K.R. Pawar, R.P. Gaikwad, S.B. Gaikwad, “Animal Health Monitoring
System Using GPS & GSM Modem,” S. 314-317, 2019.

U. Brinkschulte und T. Ungerer, Mikrocontroller und Mikroprozessoren. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2010, 1sBN: 978-3-642-05397-9.

G. Schmitt und A. Riedenauer, Hrsg., Mikrocontrollertechnik mit AVR. De Gruyter, 2019,
1SBN: 9783110403886.

Microchip Technology, “ATmega48/V/88/V/168/V Data Sheet,” 2018.
SiSy Solutions, “Technische Beschreibung myAVR Board Version 2.20,” 2019.

J. G. McNeft, “The global positioning system,” IEEE Transactions on Microwave Theory
and Techniques, Jg. 50, Nr. 3, S. 645-652, 2002.

P. J. Teunissen und O. Montenbruck, Springer Handbook of Global Navigation Satellite
Systems. Cham: Springer International Publishing, 2017, 1sBN: 978-3-319-42926-7.

C. Wolfseher. “Wie funktioniert ein Navi? | © C. Wolfseher.” (9.11.2021), Adresse: https:

//www.katharinengymnasium.de/wolf/web/gps/gpslTrilateration.html.

Wikipedia, Hrsg. “GPS Exchange Format.” (2024), Adresse: https://de.wikipedia.
org/w/index.php?title=GPS_Exchange_Format&oldid=241884354.

W. Gehrke, M. Winzker, K. Urbanski und R. Woitowitz, Digitaltechnik. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2016, 1sBN: 978-3-662-49730-2.

CDtop Technology, “PA1616D datasheet,” 2024.

AZ-Delivery, “HD44780 16x02 Blaues Display HD44780 16x02 Blaues Display mit
Serielle Schnittstelle Datenblatt,” 2024.

Simeon Maxein, “Benutzen einer SD-Speicherkarte mit dem ATmega-Microcontroller,”

2008.

SD Association | The SD Association, Hrsg. “SD Standard Overview | SD Associa-
tion.” (2023), Adresse: https://www. sdcard. org/developers/sd- standard-

overview/.

https://www.katharinengymnasium.de/wolf/web/gps/gps1Trilateration.html
https://www.katharinengymnasium.de/wolf/web/gps/gps1Trilateration.html
https://de.wikipedia.org/w/index.php?title=GPS_Exchange_Format&oldid=241884354
https://de.wikipedia.org/w/index.php?title=GPS_Exchange_Format&oldid=241884354
https://www.sdcard.org/developers/sd-standard-overview/
https://www.sdcard.org/developers/sd-standard-overview/

LITERATURVERZEICHNIS 79

[15] Wikipedia, Hrsg. “Keyhole Markup Language.” (2023), Adresse: https : //de .
wikipedia.org/w/index . php?title=Keyhole_Markup_Language&oldid=
236173780.

https://de.wikipedia.org/w/index.php?title=Keyhole_Markup_Language&oldid=236173780
https://de.wikipedia.org/w/index.php?title=Keyhole_Markup_Language&oldid=236173780
https://de.wikipedia.org/w/index.php?title=Keyhole_Markup_Language&oldid=236173780

ANHANG 80

Anhang: Code-Listings der Mikrocontroller-

Firmware

| #define F_CPU 3686400L // CPU-Frequenz

> #endif

3 #define BAUD 9600L // Baudrate (GPS-Modul Standard)
4

s #define BUTTON1_PIN PD2 // Taste 1-Pin

¢« #define BUTTON2_PIN PD3 // Taste 2-Pin

.

s #include <avr/io.h> // AVR-IO

o #include <avr/interrupt.h> // AVR-Interrupt

o #include <util/delay.h> // AVR-Delay

#include <stdint.h> // Standarddatentypen

> #include <string.h> // String
3 #include <stdlib.h> // Standardbibliothek

4+ #include <stdio.h> // Standard-Ein- und Ausgabe

s #include <stdbool.h> // Boolesche Werte

¢ #include <avr/eeprom.h> // AVR-EEPROM

7 #include "Uart.h" // UART
s #include "lcd.h" // LCD
o #include "spi.h" // SPI

20 #include "sdcard.h" // SD-Karte

N

> volatile uint8_t Messung_modus = 0; // Flag fur Messung Modus (0 = AUS, 1 =
AN)
23 volatile uint8_t Lesen_modus = 0; // Flag fiur Lesen Modus (0 = AUS, 1 = AN)

8}

4+ static bool gpsSignallost; // GPS-Signalstatus

2 uint32_t EEMEM speicher_Addr; // Speicherort der Adresse im EEPROM (0
x00000000)
7 uint32_t SchreibenAddr = 0x00000000; // Addresse zu schreiben (0x00000000)

)

s uint32_t LesenAddr = 0x00000000; // Addresse zu lesen (0x00000000)

)

20 uint32_t Gesamtbytes = 1977188352; // GesamtgrolRe als KB der 2GB SD-Karte
(1977188352)
o uint32_t Sektorbytes = 0x00000200; // 512kb pro Sektor (0x00000200)

2

@

36

3

%

39

40

4

47

48

49

v

8

59

60

61

62

63

65

ANHANG 81

uint8_t res[5], buf[50]; // Fur SD-Karte schreiben

> uint8_t resl1[5], bufl[50]; // Fur SD-Karte lesen

uint8_t token®, tokenl; // Fur SD-Karte lesen und schreiben

char* token; // Fiur die GPS-Datensatz verarbeiten

void initializeSystem(void); // System initialisieren
void lesenSDCard(void); // SD-Karte lesen
void abholenGPSDaten(void); // GPS-Daten abholen

void verarbeitenGPSLine(char *line); // GPS-Daten verarbeiten

void setBaudRate (unsigned long baud) {

uart_init (UART_BAUD_SELECT (baud, F_CPU));

s void EEPROM_speicherAddress(uint32_t Addr) { // Adresse im EEPROM speichern

eeprom_busy_wait(); // Warten, dass EEPROM nicht besetzt ist
eeprom_update_block((const void*)&Addr, &speicher_Addr, sizeof(Addr));
// Adresse im EEPROM speichern

uint32_t EEPROM_lesenAddress(void) { // Adresse im EEPROM lesen
uint32_t Addr; // Adresse
eeprom_busy_wait(); // Warten, dass EEPROM nicht besetzt ist
eeprom_read_block ((void*)&Addr, &speicher_Addr, sizeof(Addr)); //
Adresse im EEPROM lesen

return Addr; // Adresse zuriickgeben

// Behandlung von Tastenunterbrechungen mit der ISR (Interrupt Service
Routine)
ISR(INTO_vect) // INTO
{
_delay_ms (20); // Entprellung (20ms)
if (!'(PIND & (1 << BUTTON1_PIN))) { // Prufen, ob BUTTON1_PIN gedriickt
ist (0 = gedriickt, 1 = nicht gedriickt)
if (Lesen_modus) { // Wenn im Lesemodus
return; // Zurick
}
if (PIND & (1 << BUTTON2_PIN)) { // Prufen, ob BUTTON2_PIN NICHT

ANHANG 82

gedrickt ist (0 = nicht gedrickt, 1 = gedrickt)
66 Messung_modus = !Messung_modus; // Messung Modus umschalten (0

= AUS, 1 = AN)

67 //uart_puts ("Messung: "); // Ausgabe auf UART

68 //uart_puts (Messung_modus ? "AN" : "AUS"); // Ausgabe auf UART
69 //uart_puts ("\r\n"); // Ausgabe auf UART

70 } else { // Wenn BUTTON2_PIN auch gedrickt ist (0 = gedriuckt, 1

= nicht gedrickt)
71 EEPROM_speicherAddress (0x00000000); // Setzen der zuletzt

gespeicherten Adresse auf 0x00000000 wdhrend der manuellen

Initialisierung
72 initializeSystem(); // System neu initialisieren
73 }
74 }

75}
76

7 ISR(INT1_vect)

-

7 {

79 _delay_ms(20); // Entprellung (20ms)

80 if (!'(PIND & (1 << BUTTON2_PIN))) { // Prifen, ob BUTTON2_PIN gedriickt
ist (0 = gedrickt, 1 = nicht gedriickt)

81 if (Messung_modus) { // Wenn im Messmodus

82 return; // Zurick

83 }

84 if (Lesen_modus) { // Wenn im Lesemodus, verhindere
Reinitialisierung

85 return; // Zurick

86 }

87 if (PIND & (1 << BUTTON1_PIN)) { // Prifen, ob BUTTONI_PIN NICHT
gedriuckt ist (0 = nicht gedrickt, 1 = gedriuckt)

88 initializeSystem(); // System neu initialisieren

89 Lesen_modus = !Lesen_modus; // Lesen Modus umschalten (0 = AUS,

1 = AN)

90 //uart_puts("Lesen: "); // Ausgabe auf UART

91 //uart_puts(Lesen_modus ? "AN" : "AUS"); // Ausgabe auf UART

92 //uart_puts ("\r\n"); // Ausgabe auf UART

93 Messung_modus = 0; // Wenn im Lesemodus, deaktivieren des
Messmodus (0 = AUS, 1 = AN)
94 } else { // Wenn BUTTON1_PIN auch gedrickt ist (0 = gedriuckt, 1

95

96

97

98

99

100

103

104

105

106

107

108

109

110

116

117

1

8

119

120

126

127

128

ANHANG

83

= nicht gedrickt)

EEPROM_speicherAddress (0x00000000); // Setzen der zuletzt
gespeicherten Adresse auf 0x00000000 widhrend der manuellen
Initialisierung

initializeSystem(); // System neu initialisieren

int main(void)

{

// Initialisierung des Systems

initializeSystem();

while (1) // Endlosschleife

{
if (Lesen_modus) // Lesen Modus (0 = AUS, 1 = AN)
{
lesenSDCard(); // SD-Karte lesen
}
if (Messung_modus) // Messung Modus (® = AUS, 1 = AN)
{
abholenGPSDaten(); // GPS-Daten abholen
3
}

return 0; // Zurick

void initializeSystem(void) // System initialisieren

{

// UART initialisieren

uart_init (UART_BAUD_SELECT (BAUD, F_CPU));

// LCD initialisieren

lcd_init Q) ;

// SPI initialisieren

SPI_init (SPI_MASTER | SPI_FOSC_16 | SPI_MODE_0);

133

134

135

136

139

140

144

145

146

147

148

149

150

151

155

156

157

159

160

161

162

163

ANHANG 84
// Letzte Adresse aus EEPROM lesen
SchreibenAddr = EEPROM_lesenAddress();
// SD-Karte initialisieren
if(SD_init() != SD_SUCCESS) // Wenn SD-Karte nicht initialisiert werden
kann
{

uart_puts("Fehler bei der Initialisierung der SD-Karte!\r\n"); //
Ausgabe auf UART
lcd_print_str("Keine SD-Karte!"); // Ausgabe auf LCD

}
else
{
if (SchreibenAddr == 0) // Wenn SchreibenAddr gleich 0 ist
{
_delay_ms (100); // Kurze Verzdgerung
lcd_print_str("Messung starten durch Taste 1"); // Ausgabe auf
LCD
}
else // Wenn SchreibenAddr nicht gleich 0 ist
{
_delay_ms (100); // Kurze Verzdgerung
lcd_print_str("Weiter messen durch Taste 1"); // Ausgabe auf
LCD
3
}

// Taste 1-Pin als Eingang setzen und den internen Pull-Up-Widerstand
aktivieren

DDRD &= ~(1 << BUTTON1_PIN); // Setze als Eingang

PORTD |= (1 << BUTTON1_PIN); // Aktiviere internen Pull-Up-Widerstand

// Taste 2-Pin als Eingang setzen und den internen Pull-Up-Widerstand
aktivieren

DDRD &= ~(1 << BUTTON2_PIN); // Setze als Eingang

PORTD |= (1 << BUTTON2_PIN); // Aktiviere internen Pull-Up-Widerstand

// INTO einstellen, um die fallende Flanke von Taste 1 zu erkennen

ANHANG 85

164 EICRA |= (1 << ISCO1);

165 EICRA &= ~(1 << ISCOO0); // INTO

166

167 // INT1 einstellen, um die fallende Flanke von Taste 2 zu erkennen
168 EICRA |= (1 << ISCl1);

169 EICRA &= ~(1 << ISC10); // INT1

170

171 // Externen Interrupt O und externen Interrupt 1 zulassen
172 EIMSK |= (1 << INTO®) | (1 << INT1); // INTO und INTI1

173

174 // Interrupts aktivieren

175 sei();

176 }

177

17 void lesenSDCard(void) // SD-Karte lesen

179 §

180 lcd_clear(); // LCD lo6schen

181 lcd_print_str("Lesen..."); // Ausgabe auf LCD

182 setBaudRate (115200L); // Baudrate setzen (Daten schneller iubertragen)

183 if (LesenAddr < SchreibenAddr) // Wenn die Adresse zum Lesen kleiner
als die Adresse zum Schreiben ist

184 {

185 resl[0] = SD_readSingleBlock(LesenAddr, bufl, &tokenl); // SD-Karte

lesen

186 if (resl[0] == 0x00) // Wenn SD-Karte erfolgreich gelesen werden
kann

187 {

188 if (tokenl == SD_START_TOKEN) // Wenn Tokenl gleich dem Start-
Token ist

189 {

190 for (uint8_t i = ®; i < 50; i++) // Fiur 50 Zeichen

191 {

192 if (bufl[i] !'= 0) // Wenn das Zeichen nicht gleich 0
ist

193 {

194 uart_putc(bufl[i]); // Ausgabe auf UART

195 }

196 else

197 {

198

199

200

201

202

204

205

206

207

208

209

210

223

224

225

226

3

227

228

229

230

ANHANG

86

else

break; // Zurituck

else

uart_puts("Fehler!\r\n"); // Ausgabe auf UART

else

uart_puts("Fehler!\r\n"); // Ausgabe auf UART
3

LesenAddr += Sektorbytes * 1; // Jede 1 Sektor einmal lesen (512kb)

Lesen_modus = 0; // Lesen Modus deaktivieren (0 = AUS, 1 = AN)
LesenAddr = 0x00000000; // Lesen Adresse auf 0x00000000 setzen
uart_puts("Lesen: "); // Ausgabe auf UART
uart_puts(Lesen_modus ? "AN" : "AUS"); // Ausgabe auf UART
uart_puts("\r\n"); // Ausgabe auf UART

lcd_clear(); // LCD 1l6schen

_delay_ms (100); // Kurze Verzdgerung

lcd_print_str("Lesen erfolgreich!"); // Ausgabe auf LCD
setBaudRate (9600L); // Baudrate setzen (GPS-Modul Standard)

void abholenGPSDaten(void) // GPS-Daten abholen

{

stat

stat

stat

ic char 1line[50]; // Zeile
ic uint8_t line_index = 0; // Zeilenindex

ic uint8_t gngga_index = 0; // GNGGA-Index

if(uart_available() > 0) // Sobald die GPS-Daten verfiigbar sind (0

nicht verfiugbar, 1 = verfiuigbar)

{

for(uint8_t i = 0; i < uart_available(); i++) // Fur die Anzahl der

ANHANG

verfiigbaren GPS-Daten

236 {

237 char ¢ = uart_getc(); // GPS-Daten abholen
238

239 if (gngga_index == 0 & c == ’'§’)

240 {

241 gngga_index++;

242 }

243 else if (gngga_index == 1 && c == ’G’)
244 {

245 gngga_index++;

}

247 else if (gngga_index == 2 && c == ’'N’)
248 {

249 gngga_index++;

250 }

251 else if (gngga_index == 3 && c == 'G’)
252 {

253 gngga_index++;

}

255 else if (gngga_index == 4 && c == ’G’)
256 {

257 gngga_index++;

258 }

259 else if (gngga_index == 5 && c == ’A’)
260 {

261 gngga_index++;

262 }

263 else if (gngga_index == 6 && c == ’,’)
264 {

265 gngga_index++;

266 }

267 else if (gngga_index >= 7) // Ohne "$GNGGA,", vom 7. Zeichen

an zu zdhlen

268 {

269 if (line_index < sizeof(line) - 1) // Wenn der Zeilenindex
kleiner als die ZeilengroRe - 1 ist

270 {

271 line[line_index] = c; // Zeile setzen

277

278

279

280

281

282

284

285

286

287

288

289

290

291

292

294

295

296

297

298

299

300

302

303

304

306

307

308

ANHANG 88

line_index++; // Zeilenindex erhohen

}

}

else

{
gngga_index = 0;

}

if (line_index == 37) // Bis das Zeichen Fix -> Z.B

(165006.000,2241.9107,N,12017.2383,E,1)

{
line[line_index] = ’'\0’; // Zeile setzen
verarbeitenGPSLine(line); // GPS-Daten verarbeiten
line_index = 0; // Zeilenindex zuriucksetzen
gngga_index = 0; // GNGGA-Index zurilcksetzen

}

// Uberpriifen, ob GPS-Signal verloren gegangen ist
if (gpsSignallLost) {
lcd_clear(); // LCD 1l6schen
lcd_print_str("Kein GPS-Signal!"); // Ausgabe auf LCD

gpsSignalLost = false; // Setze den GPS-Signalstatus zurick

void verarbeitenGPSLine(char* line) // GPS-Daten verarbeiten

{

float latitude = 0.0, longitude = 0.0; // Breitengrad und Langengrad
char NS, EW; // Norden und Osten

token = strtok(line, ","); // Zeile aufteilen

uint8_t hour = (token[®] - ’0’) * 10 + (token[1l] - ’'0’); // Zeitzone
UTC

uint8_t min = (token[2] - '0’) * 10 + (token[3] - ’'07);

uint8_t sec = (token[4] - ’'0’) * 10 + (token[5] - ’0’);

char time_datal[l1l6]; // Zeit

309

311

312

314

315

317

318

339

340

341

342

89

ANHANG
// Zeit setzen (Zeit: 10:07:53)
strcpy(time_data, "Zeit: ");

itoa Chour, buf, 10);

if (hour < 10) strcat(time_data, "0"); // Wenn die Stunde kleiner als
10 ist, dann 0 hinzufiigen

strcat(time_data, buf);

strcat(time_data, ":");

itoa(min, buf, 10);

if (min < 10) strcat(time_data, "0"); // Wenn die Minute kleiner als 10
ist, dann 0 hinzufiigen

strcat (time_data, buf);

strcat (time_data, ":");

itoa(sec, buf, 10);

if (sec < 10) strcat(time_data, "0"); // Wenn die Sekunde kleiner als
10 ist, dann 0 hinzufiigen

strcat(time_data, buf);

token = strtok(NULL, ","); // Zeile aufteilen

int degree = atoi(token) / 100; // Grad

float minute = atof(token) - degree * 100; // Minute

latitude = degree + minute / 60.0; // Breitengrad

token = strtok(NULL, ","); // Zeile aufteilen

NS = token[0]; // Norden oder Siden

token = strtok(NULL, ","); // Zeile aufteilen

degree = atoi(token) / 100; // Grad

minute = atof(token) - degree 100; // Minute

longitude = degree + minute / 60.0; // Liangengrad

token = strtok(NULL, ","); // Zeile aufteilen

EW = token[0]; // Osten oder Westen

token = strtok(NULL, ","); // Zeile aufteilen

int fix = atoi(token); // Fix (0 = kein Fix, 1 = Fix)

// Falls der Fix 0 ist,
gibt (O
if (fix == 0) {

= kein Fix, 1 = Fix)

bedeutet dies,

dass es keine gultigen GPS-Daten

ANHANG 90

344 gpsSignallLost = true; // GPS-Signalstatus auf verloren setzen

345 return; // Zurick

346 }

347

348 // GPS-Signalstatus auf gefunden setzen, da gultige Daten vorhanden
sind

349 gpsSignallost = false;

350

351 char lat_data[16], lon_data[16]; // Breitengrad und Ldngengrad

350 int lat_int = (int)latitude; // Breitengrad

353 int lat_frac = (int)((latitude - lat_int) * 10000); // Langengrad

354

355 // Breitengrad setzen (Lat: 51.7141 N)

356 strcpy(lat_data, "Lat: ");

357 itoa(lat_int, buf, 10);

358 strcat(lat_data, buf);

359 strcat(lat_data, ".");

360 itoa(lat_frac, buf, 10);

361 if (lat_frac < 1000) strcat(lat_data, "0");
362 if (lat_frac < 100) strcat(lat_data, "0");
363 if (lat_frac < 10) strcat(lat_data, "0");
364 strcat(lat_data, buf);

365 strcat(lat_data, " ");

366 strncat(lat_data, &NS, 1);

368 int lon_int = (int)longitude; // Langengrad

369 int lon_frac = (int) ((longitude - lon_int) * 10000); // Ldngengrad
370

371 // Langengrad setzen (Lon: 8.3302 E)

372 strcpy(lon_data, "Lon: ");

373 itoa(lon_int, buf, 10);

374 strcat(lon_data, buf);

375 strcat(lon_data, ".");

376 itoa(lon_frac, buf, 10);

377 if (lon_frac < 1000) strcat(lon_data, "0");
378 if (lon_frac < 100) strcat(lon_data, "0");
379 if (lon_frac < 10) strcat(lon_data, "0");
380 strcat(lon_data, buf);

381 strcat(lon_data, " ");

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

405

406

407

408

409

410

411

412

413

414

ANHANG 91

strncat(lon_data, &EW, 1);

lcd_clear(); // LCD 1lo6schen

_delay_ms (100); // Kurze Verzdgerung
lcd_print_str(lat_data); // Ausgabe auf LCD
lcd_setcursor(0,1);

lcd_print_str(" ");

lcd_print_str(lon_data); // Ausgabe auf LCD

// Die Daten in den Puffer schreiben

memset (buf, 0, sizeof(buf)); // Den Puffer mit Nullen initialisieren

// -> Z.B (Zeit: 10:07:53, Lat: 51.7141 N, Lon: 8.3302 E)
strcpy ((char *)buf, time_data); // Zeit setzen

strcat ((char *)buf, ", ");

strcat ((char *)buf, lat_data); // Breitengrad setzen
strcat ((char *)buf, ", ");

strcat ((char *)buf, lon_data); // Langengrad setzen

strcat ((char *)buf, "\r\n");

// Daten in den Sektor schreiben (512kb)
res[0] = SD_writeSingleBlock(SchreibenAddr, buf, &token®); // SD-Karte

schreiben

// Aktualisieren der Adresse fir das nachste Schreiben

SchreibenAddr += Sektorbytes; // Jede 1 Sektor einmal schreiben (512kb)

if(SchreibenAddr >= Gesamtbytes) { // Wenn die Adresse zum Schreiben gr
oRer als die GesamtgrolRe ist

SchreibenAddr = 0x00000000; // Schreiben Adresse auf 0x00000000
setzen

3

// Adresse im EEPROM aktualisieren
EEPROM_speicherAddress (SchreibenAddr); // Adresse im EEPROM

speichern

Listing 5.1: vollstindiger Quellcode des Mikrocontroller-Programms

ANHANG

92

Anhang: Code-Listings der PC-Anwendung

| #include <iostream> // Fur Ein- und Ausgabe

» #include <fstream> // Fiur Dateioperationen

3 #include <string> // Fur std::string

4+ #include <windows.h> // Fur COM-Port

s #include <ctime> // Fur aktuelles Datum und Uhrzeit

¢ #include <Shlobj.h> // Fiur SHGetFolderPath (Benutzerdokumente-Ordner
abrufen)

s // Daten von COM lesen

9 bool COMDatenLesen(HANDLE hCom, std::string& daten) {

10 char puffer[64]; // Puffer fir die empfangenen Daten (64 Bytes)

1 DWORD geleseneBytes; // Anzahl der gelesenen Bytes

12 if (ReadFile(hCom, puffer, sizeof(puffer) - 1, &geleseneBytes, nullptr)

&& geleseneBytes > 0) { // Lesen Sie die Daten vom COM-Port

3 puffer[geleseneBytes] = '\0’; // Nullterminator hinzufiigen
14 daten = puffer; // Daten in den String schreiben
15 return true; // Erfolg

16 }

17 return false; // Misserfolg

20 // Aktuelles Datum abrufen
21 std::string aktuellesDatumHolen() { // Aktuelles Datum abrufen

2 time_t jetzt = time(nullptr); // Aktuelle Zeit abrufen

23 struct tm zeitstruktur; // Zeitstruktur erstellen

24 char datumPuffer[80]; // Puffer fiur das Datum (80 Bytes)

25 localtime_s (&zeitstruktur, &jetzt); // Zeit in die Zeitstruktur
konvertieren

26 strftime (datumPuffer, sizeof(datumPuffer), "%Y-%m-%d", &zeitstruktur);

// Format: JJJJ-MM-TT

27 return datumPuffer; // Datum zuriickgeben

30 // Aktuelles Datum und Uhrzeit abrufen fir den Dateinamen
31 std::string aktuellesDatumUndUhrzeitHolen() { // Aktuelles Datum und

Uhrzeit abrufen

ANHANG 93

3 time_t jetzt = time(nullptr); // Aktuelle Zeit abrufen

33 struct tm zeitstruktur; // Zeitstruktur erstellen

34 char datumPuffer[80]; // Puffer fiur das Datum (80 Bytes)

35 localtime_s (&zeitstruktur, &jetzt); // Zeit in die Zeitstruktur
konvertieren

36 strftime (datumPuffer, sizeof(datumPuffer), "%Y%m%d_%H%M%S", &
zeitstruktur); // Format: JJJJMMTT_HHMMSS

37 return datumPuffer; // Datum und Uhrzeit zuriickgeben

40 // Extrahieren und Konvertieren von Breiten- und Langengraden

41 std::string BreitenlLangengradKonvertieren(const std::string& rohwert, char
richtung) { // Extrahieren und Konvertieren von Breiten- und L&
ngengraden

o) std::string dezimalwert = rohwert.substr(®, rohwert.find(’ ’')); //
Extrahieren Sie den Dezimalwert aus dem Rohwert

43 if (richtung == 'S’ || richtung == 'W’) { // Wenn die Richtung Siden

oder Westen ist, ist der Dezimalwert negativ

44 dezimalwert = "-" + dezimalwert; // Dezimalwert negativ
45 }

46 return dezimalwert; // Dezimalwert zuriickgeben

47}

48

9 int main() {

&

50 setlocale(LC_ALL, ""); // Locale setzen, um Umlaute zu unterstiutzen (&,
6, u, R)

51

52 // COM-Port vom Benutzer erfragen (Beispiel: 5)

53 int comNummer; // COM-Port-Nummer

54 std::cout << "Bitte geben Sie die Nummer des gewiinschten COM-Ports ein:

; // Aufforderung zur Eingabe der COM-Port-Nummer
55 std::cin >> comNummer; // COM-Port-Nummer vom Benutzer eingeben
57 std::string comName = "COM" + std::to_string(comNummer) + ":"; // COM-

Port-Name (Beispiel: COMS5:)

59 HANDLE hCom; // COM-Port-Handle
60 DCB dcbStruktur; // DCB-Struktur
61 BOOL erfolg; // Erfolg

ANHANG 94

62

63 hCom = CreateFileA(comName.c_str(), GENERIC_READ | GENERIC_WRITE, O,
nullptr, OPEN_EXISTING, 0O, nullptr); // Offnen Sie den COM-Port

64 if (hCom == INVALID_HANDLE_VALUE) { // Wenn der COM-Port nicht geocffnet
werden kann, wird eine Fehlermeldung ausgegeben

65 std::cerr << "Fehler beim Offnen von << comName << std::endl; //
Fehlermeldung

66 return 1; // Beendet das Programm, wenn der COM-Port nicht geo6ffnet
werden kann

67 }

68

9 std::wcout << L"Erfolgreich verbunden mit " << comName.c_str() << std::
endl; // Erfolgsmeldung

70 std::wcout << L"Bitte driicken Sie die Taste 2, um die GPX-Datei zu

speichern!" << std::endl; // Aufforderung zum Speichern der GPX-Datei

72 erfolg = GetCommState(hCom, &dcbStruktur); // COM-Port-Status abrufen
73 if (lerfolg) { // Wenn der COM-Port-Status nicht abgerufen werden kann,

wird eine Fehlermeldung ausgegeben

74 std::cerr << "GetCommState fehlgeschlagen" << std::endl; //
Fehlermeldung

75 CloseHandle (hCom); // COM-Port schlielRen

76 return 1; // Beendet das Programm, wenn der COM-Port-Status nicht

abgerufen werden kann

77 }

78

79 dcbStruktur.BaudRate = CBR_115200; // Baudrate

80 dcbStruktur.ByteSize = 8; // Bytegrole

81 dcbStruktur.StopBits = ONESTOPBIT; // Stopbit

82 dcbStruktur.Parity = NOPARITY; // Paritat

83

84 erfolg = SetCommState(hCom, &dcbStruktur); // COM-Port-Status setzen
85 if (lerfolg) { // Wenn der COM-Port-Status nicht gesetzt werden kann,

wird eine Fehlermeldung ausgegeben

86 std::cerr << "SetCommState fehlgeschlagen" << std::endl; //
Fehlermeldung

87 CloseHandle (hCom); // COM-Port schlielRen

88 return 1; // Beendet das Programm, wenn der COM-Port-Status nicht

gesetzt werden kann

89

90

93

94

95

96

97

98

99

100

104

105

106

108

109

110

111

ANHANG

95

// Benutzerdokumente -Ordner abrufen

char dokumentePfad[MAX_PATH]; // Puffer fir den Dokumentenpfad (
MAX_PATH Bytes)

HRESULT result = SHGetFolderPathA(NULL, CSIDL_PERSONAL, NULL,
SHGFP_TYPE_CURRENT, dokumentePfad); // Benutzerdokumente-Ordner abrufen

if (!SUCCEEDED(result)) { // Wenn der Dokumentenpfad nicht abgerufen
werden kann, wird eine Fehlermeldung ausgegeben

std::cerr << "Fehler beim Abrufen des Dokumentenpfads" << std::endl
; // Fehlermeldung

return 1; // Beendet das Programm, wenn der Dokumentenpfad nicht
abgerufen werden kann

3

std::string gxpOrdnerPfad = std::string(dokumentePfad) + "\\GXP_Datei";
// GXP_Datei-Ordnerpfad

// Uberpriifen, ob der Ordner existiert, und ggf. erstellen
DWORD ftyp = GetFileAttributesA(gxpOrdnerPfad.c_str(Q)); //
Dateiattribut abrufen
if (ftyp == INVALID_FILE_ATTRIBUTES) { // Wenn das Dateiattribut nicht
abgerufen werden kann, wird eine Fehlermeldung ausgegeben
if (!CreateDirectoryA(gxpOrdnerPfad.c_str(), NULL)) { // Wenn der
Ordner nicht erstellt werden kann, wird eine Fehlermeldung ausgegeben
std::cerr << "Fehler beim Erstellen des Ordners GXP_Datei" <<
std::endl; // Fehlermeldung
return 1; // Beendet das Programm, wenn der Ordner nicht
erstellt werden kann
}
}
else if (!(ftyp & FILE_ATTRIBUTE_DIRECTORY)) { // Wenn das
Dateiattribut nicht abgerufen werden kann, wird eine Fehlermeldung
ausgegeben
std::cerr << "GXP_Datei ist kein Ordner" << std::endl; //
Fehlermeldung
return 1; // Beendet das Programm, wenn GXP_Datei existiert, aber

kein Ordner ist

ANHANG 96

13 }

114

115 // Erzeugen Sie einen Dateinamen basierend auf dem aktuellen Datum und
der Uhrzeit

116 std::string datumUndUhrzeit = aktuellesDatumUndUhrzeitHolen(); //
Aktuelles Datum und Uhrzeit abrufen

117 std::string dateiName = gxpOrdnerPfad + "\\Output_" + datumUndUhrzeit +

".gpx"; // Dateiname

118

19 std::ofstream gpxDatei(dateiName, std::ios::out); // GPX-Datei o6ffnen

120 if (!gpxDatei.is_open()) { // Wenn die GPX-Datei nicht gedéffnet werden
kann, wird eine Fehlermeldung ausgegeben

121 std::cerr << "Datei konnte nicht zum Schreiben gedffnet werden" <<
std::endl; // Fehlermeldung

122 CloseHandle (hCom); // COM-Port schlielRen

123 return 1; // Beendet das Programm, wenn die GPX-Datei nicht geod

ffnet werden kann

124 }

125

126 // Beginn der GPX-Datei schreiben

127 gpxDatei << "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n"; // XML-
Deklaration

128 gpxDatei << "<gpx xmlns:xsi=\"http://www.w3.0rg/2001/XMLSchema-instance

\" xmlns=\"http://www.topografix.com/GPX/1/1\" xsi:schemalocation=\"http
://www.topografix.com/GPX/1/1 http://www.topografix.com/GPX/1/1/gpx.xsd
\" version=\"1.1\" creator=\"https://gpx.studio\">\n"; // GPX-Datei-
Header

129 gpxDatei << " <trk>\n"; // Track-Element

"

130 gpxDatei << <trkseg>\n"; // Tracksegment-Element

132 std::string aktuellesDatum = aktuellesDatumHolen(); // Aktuelles Datum
abrufen

133 std::string daten; // Daten

134 std::string angesammelteDaten; // Angesammelte Daten

136 while (true) { // Endlosschleife
137 if (COMDatenLesen(hCom, daten)) { // Daten vom COM-Port lesen

138 angesammelteDaten += daten; // Daten anhdngen

ANHANG 97

140 size_t endeDerNachricht; // Ende der Nachricht

141 while ((endeDerNachricht = angesammelteDaten.find("\r\n")) I=
std::string::npos) { // Wenn das Ende der Nachricht gefunden wird

142 std::string nachricht = angesammelteDaten.substr (0,
endeDerNachricht); // Nachricht extrahieren

143 angesammelteDaten.erase (0, endeDerNachricht + 2); //

Nachricht 16schen

145 // Datenanzeige im Terminal

146 std::cout << "Empfangene Daten: << nachricht << std::endl
; // Empfangene Daten im Terminal anzeigen
147

148 if (nachricht == "Lesen: AUS") { // Wenn die Nachricht "

Lesen: AUS" ist, wird die Endlosschleife beendet

149 goto abschluss; // Sprung zum Dateiende

150 }

151

152 // Die Positionen der relevanten Datenpunkte bestimmen

153 size_t zeitPos = nachricht.find("Zeit: "); // Position der
Zeit

154 size_t breitePos = nachricht.find("Lat: "); // Position der
Breite

155 size_t laengePos = nachricht.find("Lon: "); // Position der
Lange

156

157 if (zeitPos != std::string::npos && breitePos != std::
string::npos && laengePos != std::string::npos) { // Wenn die Positionen

der relevanten Datenpunkte gefunden werden

158 std::string zeit = aktuellesDatum + "T" + nachricht.
substr(zeitPos + 6, 8) + "Z"; // Zeit extrahieren

159

160 size_t breiteEndePos = nachricht.find(’ ’, breitePos +
5); // Position des Leerzeichens nach der Breite

161 if (breiteEndePos == std::string::npos || breiteEndePos
> laengePos) { // Wenn das Leerzeichen nicht gefunden wird oder die
Position groRer als die Ldnge ist

162 breiteEndePos = laengePos; // Position der Lange

163 }

164 std::string rohBreite = nachricht.substr(breitePos + 5,

ANHANG 98

breiteEndePos - breitePos - 5); // Rohwert der Breite extrahieren

165 char breitenrichtung = rohBreite.back(); // Richtung
der Breite extrahieren

166 std::string breite = BreitenlLdngengradKonvertieren (
rohBreite, breitenrichtung); // Breite konvertieren

167

168 size_t laengeEndePos = nachricht.find(’ ’, laengePos +
5); // Position des Leerzeichens nach der Lange

169 if (laengeEndePos == std::string::npos) { // Wenn das

Leerzeichen nicht gefunden wird

170 laengeEndePos = nachricht.length(); // Ldnge des
Strings

171 }

172 std::string rohLaenge = nachricht.substr(laengePos + 5,
laengeEndePos - laengePos - 5); // Rohwert der Lange extrahieren

173 char laengerichtung = rohLaenge.back(); // Richtung der
Lange extrahieren
174 std::string laenge = BreitenlLdngengradKonvertieren (
rohLaenge, laengerichtung); // Lange konvertieren

176 gpxDatei << <trkpt lat=\"" << breite << "

\" lon=\"" << laenge << "\">\n"; // Trackpunkt-Element

177 gpxDatei << <time>" << zeit << "</time

>\n"; // Zeit-Element

178 gpxDatei << " </trkpt>\n"; // Trackpunkt -
Element

179 }

180 }

181 }

182 Sleep(100); // 100 Millisekunden warten

183 }

184

155 abschluss:

0

186 // Abschluss der GPX-Datei schreiben

187 gpxDatei << " </trkseg>\n"; // Tracksegment-Element
188 gpxDatei << " </trk>\n"; // Track-Element

189 gpxDatei << "</gpx>"; // GPX-Datei-Ende

190 gpxDatei.close(); // GPX-Datei schlielen
191 CloseHandle (ChCom); // COM-Port schliellen

192

194

195

196

197

ANHANG

99

std::cout << "Die Daten wurden in " << dateiName << "

std::endl; // Erfolgsmeldung

system("pause"); // Programm anhalten

return 0; // Programm beenden

}
Listing 5.2: vollstindiger Quellcode der PC-Anwendung

gespeichert." <<

EIDESSTATTLICHE ERKLARUNG 100

Eidesstattliche Erklarung

Ich versichere hiermit, dass ich die vorliegende Arbeit selbststindig und nur unter Benutzung
der angegebenen Literatur und Hilfsmittel angefertigt habe. Wortlich iibernommene Sétze und
Satzteile sind als Zitate belegt, andere Anlehnungen hinsichtlich Aussage und Umfang unter
Quellenangabe kenntlich gemacht. Die Arbeit hat in gleicher oder @hnlicher Form noch keiner

Priifungsbehorde vorgelegen und ist auch noch nicht veroffentlicht.

Lippstadt, den 29.02.2024 " 1

(Unterschrtft des Verfassers)

Mobile User

	Kurzzusammenfassung
	Abbildungsverzeichnis
	Tabellenverzeichnis
	Listings
	Abkrüzungsverzeichnis
	Einführung
	Hintergrund und Relevanz
	Zielsetzung
	Vorgehensweise

	Grundlagen und Designentwurf
	Mikrocontroller
	Grundlegende Begriffe von Mikrocontrollern
	Auswahl des Mikrocontrollers
	Auswahl des Entwicklungsboards
	Auswahl der Programmiersprache und der Entwicklungsumgebung (IDE)

	GPS Modul
	Grundlegende Begriffe des Global Positioning Systems
	Berechnung und Umwandlung der GPS-Koordinaten
	Auswahl der seriellen Schnittstellen (UART)
	Auswahl des GPS Moduls

	Display mit I2C Schnittstelle Modul
	Auswahl der seriellen Schnittstellen (I2C / TWI)
	Auswahl des Displays mit I2C Schnittstelle

	SD-Karte Modul
	Auswahl der seriellen Schnittstellen (SPI)
	Grundlegende Begriffe von SD-Karte

	Umsetzung und Softwareentwicklung
	Bauteilverbindung
	Entwicklung der Mikrocontroller-Firmware
	Beschreibung von initializeSystem()
	Beschreibung von lesenSDCard()
	Beschreibung von abholenGPSDaten()
	Beschreibung von verarbeitenGPSLine()
	Beschreibung von EEPROM_speicherAddress()
	Beschreibung von EEPROM_lesenAddress()
	Beschreibung von ISR(INT0_vect)
	Beschreibung von ISR(INT1_vect)

	Entwicklung der PC-Anwendung
	Beschreibung von COMDatenLesen()
	Beschreibung von aktuellesDatumHolen()
	Beschreibung von aktuellesDatumUndUhrzeitHolen()
	Beschreibung von BreitenLängengradKonvertieren()
	Erstellung von GPX-Datei
	Beschreibung von abschluss

	Test und Ergebnisse
	Funktionstests
	Vorgehensweise von Funktionstest
	Ergebnisse von Funktionstest

	Demonstrationsbeispiel
	Testverfahren und Validierung der Funktionalitäten
	Testverfahren und Validierung der Zuverlässigkeit
	Testverfahren und Validierung in höhe Geschwindigkeit

	Ergebnisse der Test- und Validierungsphase

	Zusammenfassung und Ausblick
	Zusammenfassung der Arbeitsergebnisse
	Ausblick auf zukünftige Entwicklungen und Anwendungen

	Literaturverzeichnis
	Anhang: Code-Listings der Mikrocontroller-Firmware
	Anhang: Code-Listings der PC-Anwendung
	Eidesstattliche Erklärung

